
Cairo University
Faculty of Computers and Artificial Intelligence

Computer Science Department

Programming-2 CS213 UML class diagrams Dr. Amin Allam

The unified modeling language (UML) is a family of graphical notations that help describe soft-
ware systems. One of these graphical notations is class diagrams.

The above example contains these classes: Application, Screen, Game, Room, Wall,
Hero, Superman, and Batman. All of them are concrete classes (the class name is bold) except
the abstract class Hero (the class name is bold and oblique).

Each class is composed of three parts: class name, member variables, and member functions. It
is up to the designer to decide which information to include besides class name. Private members
are preceded by -. Protected members are preceded by #. Public members are preceded by +. A
pure virtual function name such as Hero::Draw() is oblique. The types of member variables
and the return types of functions follow their names.

Classes Superman and Batman are inherited from class Hero. The inheritance relation is rep-
resented by a triangle.

An object of class Game is composed from objects of class Room. The composition relation is
represented by a filled diamond. There can be arbitrary number of rooms in a game, which is
represented by *.

An object of class Room aggregates objects of class Wall. The aggregation relation is represented
by a diamond. There are 4 walls in a room, which is represented by 4. A wall object can be part
of more than one room object (possibly 2 rooms). That is why it is an aggregation relation, not a
composition relation.

An object of class Game aggregates one object of base class Hero. A Hero object can be used
independently of Game and be aggregated in objects from other classes. That is why it is an
aggregation relation, not a composition relation.

1



FCAI-CU Programming-2 CS213 UML class diagrams Amin Allam

An object of class Game is associated to an object of class Screen. Class Game is not responsible
of creating or destroying objects of class Screen, although they have a Screen object as a
member variable. That is why it is association relation, not aggregation or composition. A Game
object uses a Screen object, but not vice versa, which is indicated by the arrow direction.

The composition, aggregation, and association indicate that an object is a member variable of an-
other object. Since they are represented in the diagram by arrows, there is no need to explicitly list
them as member variables in the owner classes. Other relatively temporary dependencies are rep-
resented by dashed arrows, such as when an object of class Hero uses an object of class Screen
to draw itself, and when the class Application creates and runs an object of class Game.

2


