
Cairo University
Faculty of Computers and Artificial Intelligence

Computer Science Department

Programming-2 CS213 Polymorphism Dr. Amin Allam

1 Polymorphism

Consider the following partial definition of class Faculty:

1 class Faculty
2 {
3 protected:
4 Student* students;
5 int numStudents;
6 public:
7 void GetStudents();
8 void SortStudents();
9 void CalculateStatistics();

10
11 void ProcessStudents()
12 {
13 GetStudents();
14 SortStudents();
15 CalculateStatistics();
16 }
17 };

Assume that we need to improve the sorting algorithm of the function SortStudents(). Ac-
cording to the open/closed principle, we should derive a new class from Faculty and overload
its SortStudents() function as follows:

1 class EnhancedFaculty : public Faculty
2 {
3 public:
4 void SortStudents(); // Contains modified implementation
5 };

Consider the following code:

1 EnhancedFaculty f;
2 f.SortStudents(); // Calls SortStudents() of class EnhancedFaculty
3 f.ProcessStudents(); // Calls SortStudents() of class Faculty (unexpected)

1



FCAI-CU Programming-2 CS213 Polymorphism Amin Allam

Class EnhancedFaculty does not behave as expected. The reason is that, when calling the
function ProcessStudents() through an object of type EnhancedFaculty, the compiler
will associate it with the base class function since it does not exist in the derived class. When the
function call SortStudents() is encountered within the execution of ProcessStudents(),
the compiler will execute the SortStudents() function of the base class, which is not consis-
tent with our wish to replace it with the one in the derived class.

To achieve the desired behavior, the virtual modifier should precede the base function declara-
tion:

1 class Faculty
2 {
3 protected:
4 Student* students;
5 int numStudents;
6 public:
7 void GetStudents();
8 virtual void SortStudents();
9 void CalculateStatistics();

10 void ProcessStudents()
11 {
12 GetStudents();
13 SortStudents();
14 CalculateStatistics();
15 }
16 };
17 class EnhancedFaculty : public Faculty
18 {
19 public:
20 void SortStudents();
21 };

Now, the desired behavior is achieved:

1 EnhancedFaculty f;
2 f.SortStudents(); // Calls SortStudents() of class EnhancedFaculty
3 f.ProcessStudents(); // Calls SortStudents() of class EnhancedFaculty

When calling the function ProcessStudents() through an object of type EnhancedFaculty,
the compiler will associate it with the base class function since it does not exist in the derived class.
When the function call SortStudents() is encountered within the execution of the function
ProcessStudents(), the virtual modifier will direct the execution to check the object
type during run-time and calls will execute the SortStudents() function of the derived class
as needed. Only if it is not found in the derived class, the base class function will be executed.

The above behavior is called overriding the base class function SortStudents(). Calling the
function based on the object type checked at run-time is called run-time polymorphism. In our
lectures, we just call it polymorphism.

2



FCAI-CU Programming-2 CS213 Polymorphism Amin Allam

C++ allows a base class pointer to hold the address of an object from a derived class. Also, C++
allows a base class reference to refer to an object from a derived class. Combined with the run-time
ability of the virtual modifier to redirect execution to the actual type of the calling object, the
following examples illustrate the effect of the virtual modifier. Note that a virtual destructor is
essential for any class containing virtual functions.

1 class A
2 {
3 public:
4 virtual void F();
5 virtual void G();
6 virtual ˜A() {} // Virtual destructor is essential
7 };
8 class B : public A
9 {

10 public:
11 void F();
12 void G();
13 };
14 class C : public B
15 {
16 public:
17 void F();
18 void H();
19 };
20
21 void TestPointer()
22 {
23 A* a = new C; // A pointer to a base class can hold address of derived class
24 a->F(); // Go to A::F(), virtual redirects to C, so C::F() is called
25 a->G(); // Go to A::G(), virtual redirects to C, C::G() is not found,
26 // then go to the base class of C, so B::G() is called
27 a->H(); 6 // Compiler error because A::H() does not exist
28 delete a; // Go to A::˜A(), virtual redirects to C, so C is destroyed
29 }
30
31 void TestReference()
32 {
33 C c;
34 A& a = c; // A reference to a base class can refer to object of derived class
35 a.F(); // Go to A::F(), virtual redirects to C, so C::F() is called
36 a.G(); // Go to A::G(), virtual redirects to C, C::G() is not found,
37 // then go to the base class of C, so B::G() is called
38 a.H(); 6 // Compiler error because A::H() does not exist
39 }

3



FCAI-CU Programming-2 CS213 Polymorphism Amin Allam

Suppose we need to create a game where the user (player) can select a hero at the beginning to
play with. The game behavior is basically the same for all heroes, except for some minor details
related to each hero type.

A first attempt is the following implementation:

1 enum HeroType{SuperMario, SuperMan, BatMan};
2
3 class Hero
4 {
5 protected:
6 HeroType type;
7
8 public:
9 Hero(HeroType t) {type=t;}

10 void Fire();
11 void Jump();
12
13 void Draw()
14 {
15 if(type==SuperMario) {/* Draw SuperMario*/}
16 else if(type==SuperMan) {/* Draw SuperMan*/}
17 else if(type==BatMan) {/* Draw BatMan*/}
18 }
19 };
20
21 class Game
22 {
23 protected:
24 Hero hero;
25
26 public:
27 Game(Hero h) : hero(h) {}
28 void Play() {hero.Draw(); hero.Fire(); hero.Jump();}
29 };
30
31 void TestGame()
32 {
33 Hero hero(SuperMan);
34 Game game(hero);
35 game.Play();
36 };

The problem with this approach is that if we decide to add a new hero to the game, such as
SpiderMan, the functions of class Hero such as Draw() need to be modified, which vi-
olates the open/closed principle.

4



FCAI-CU Programming-2 CS213 Polymorphism Amin Allam

A second attempt is the following implementation:

1 class SuperMario class SuperMan class BatMan
2 { { {
3 public: public: public:
4 void Fire(); void Fire(); void Fire();
5 void Jump(); void Jump(); void Jump();
6 void Draw(); void Draw(); void Draw();
7 }; }; };
8
9 class GameSuperMario

10 {
11 protected:
12 SuperMario hero;
13 public:
14 void Play() {hero.Draw(); hero.Fire(); hero.Jump();}
15 };
16
17 class GameSuperMan
18 {
19 protected:
20 SuperMan hero;
21 public:
22 void Play() {hero.Draw(); hero.Fire(); hero.Jump();}
23 };
24
25 class GameBatMan
26 {
27 protected:
28 BatMan hero;
29 public:
30 void Play() {hero.Draw(); hero.Fire(); hero.Jump();}
31 };
32
33 void TestGame()
34 {
35 GameSuperMan game;
36 game.Play();
37 };

The problem with this approach is the need to write separate Game class for each hero, which have
very similar behaviors, which causes code duplication. Also, if we decide to add a new hero to the
game, such as SpiderMan, a class GameSpiderMan needs to be defined, with most of the
code duplicated from an existing Game class.

5



FCAI-CU Programming-2 CS213 Polymorphism Amin Allam

Polymorphism provides a better approach as follows:

1 class Hero
2 {
3 public:
4 virtual void Fire();
5 virtual void Jump();
6 virtual void Draw();
7 virtual ˜Hero() {}
8 };
9 class SuperMario : public Hero

10 {
11 public:
12 void Fire();
13 void Jump();
14 void Draw(); // Draw SuperMario
15 };
16 class SuperMan : public Hero
17 {
18 public:
19 void Fire();
20 void Jump();
21 void Draw(); // Draw SuperMan
22 };
23 class BatMan : public Hero
24 {
25 public:
26 void Fire();
27 void Jump();
28 void Draw(); // Draw BatMan
29 };
30 class Game
31 {
32 protected:
33 Hero* hero;
34 public:
35 Game(Hero* h) {hero=h;}
36 void Play() {hero->Draw(); hero->Fire(); hero->Jump();}
37 };
38 void TestGame1()
39 {
40 Hero* hero = new SuperMan;
41 Game game(hero); game.Play();
42 delete hero;
43 };

6



FCAI-CU Programming-2 CS213 Polymorphism Amin Allam

1 void TestGame2()
2 {
3 Hero* hero = new SuperMan;
4 Game* game = new Game(hero);
5 game->Play();
6 delete game; delete hero;
7 };

It is also possible to define class Game as follows:

1 class Game
2 {
3 protected:
4 Hero& hero;
5 public:
6 Game(Hero& h) hero(h) {}
7 void Play() {hero.Draw(); hero.Fire(); hero.Jump();}
8 };
9 void TestGame()

10 {
11 SuperMan s
12 Game game(s);
13 game.Play();
14 };

2 The Liskov substitution principle

The Liskov substitution principle is one of the SOLID principles stated as follows:

“Modules that use pointers or references to a base class must be able to use objects of derived
classes without knowing them.”

In the previous example, since functions of class Game use a Hero pointer, it can use objects
of derived classes, such as SuperMan, and call its functions, without including any declaration of
SuperMan inside class Game.

Inheritance and polymorphism are powerful mechanisms to apply the Liskov substitution princi-
ple. One of the important guidelines of this principle is that derived classes should behave in a
compatible or semantically similar way to the base class. For example, if the intent of the Draw()
function in class Hero is to draw the hero, the Draw() function of a derived class such as
SuperMan must draw that hero. It must be implemented, and it should not do a different thing
than drawing the SuperMan object.

7


