
Cairo University
Faculty of Computers and Artificial Intelligence

Computer Science Department

Programming-2 CS213 Operator overloading Dr. Amin Allam

1 Overloading the plus (+) operator

Consider the following definition of class String:

1 #include <cstring>
2 using namespace std;
3
4 class String
5 {
6 private:
7 char* str; // C−string containing the string appended by the null char
8 int n; // Number of characters in str, not including the null char
9

10 public:
11 String() {n=0; str=0;}
12
13 String(const char* cstr)
14 {n=strlen(cstr); str=new char[n+1]; strcpy(str, cstr);}
15
16 String(const String& s)
17 {n=s.n; str=new char[n+1]; strcpy(str, s.str);}
18
19 ˜String() {if(str) delete[] str;}
20
21 void Output() {cout<<str<<endl;}
22
23 String Add(String b) // Add this to b and return the result
24 { // without changing this or b
25 String r;
26 r.n=n+b.n; if(r.n==0) return r;
27 r.str=new char[r.n+1];
28 if(str) strcpy(r.str, str);
29 if(b.str) strcpy(r.str+n, b.str);
30 return r;
31 }
32 };

1

FCAI-CU Programming-2 CS213 Operator overloading Amin Allam

The class includes an empty constructor and a one-argument constructor which takes a C-string
and converts it to an our user-defined String object. The class includes also a copy constructor
which can be used explicitly, and is also used implicitly when passing a String object by value
(such as in Add() function). The Add() function adds two strings and returns the result. The first
added object is the one which called the function, the second added object is the only parameter to
the function. Consider the following program which uses the previously defined class:

1 int main()
2 {
3 String a("Hello"), b("-World");
4 String c=a.Add(b);
5 a.Output(); // Prints: Hello
6 b.Output(); // Prints: −World
7 c.Output(); // Prints: Hello−World
8 return 0;
9 }

To avoid calling the copy constructor which increases efficiency, we may pass the argument to the
Add() function by reference. Since that parameter is not going to be modified, we may add the
const modifier to improve readability and also to improve reliability by asking the compiler to
flag an error if the programmer mistakenly modifies the parameter within the Add() function:

1 String Add(const String& b);

Since the object which calls the Add() function is not going to be modified by it, we should add
the const modifier at the end of the function declaration as follows:

1 String Add(const String& b) const;

Suppose we want to use the + operator instead of the Add() function to improve readability:

1 String a="Hello", b="-World"; // the = in declaration calls constructor
2 String c=a+b; // Instead of: String c=a.Add(b);

Note that the operand before the + operator will be considered as the object who called the operator.
The operand after the + operator will be passed as the only argument for the operator. This can be
achieved by replacing the Add() function inside class String by:

1 class String
2 { //
3 String operator + (const String& b) const
4 {
5 String r; r.n=n+b.n; if(r.n==0) return r;
6 r.str=new char[r.n+1]; if(str) strcpy(r.str, str);
7 if(b.str) strcpy(r.str+n, b.str);
8 return r;
9 }

10 };

2

FCAI-CU Programming-2 CS213 Operator overloading Amin Allam

Suppose we need to write the following code:

1 String a="Hello"; const char* b="-World"; String c=a+b;

Although the second argument type is not String, the above code will work because the com-
piler will be able to convert a char* type to a String type using the constructor we provided:
String(const char* cstr), and then the above definition of the + operator.

However, for efficiency, we may write another member function of class String that will be
called if the first operand of the + operator is a String and the second operand is char*:

1 class String
2 { //
3 String operator + (const char* b) const
4 {
5 String r; int nb=strlen(b); r.n=n+nb;
6 if(r.n==0) return r; r.str=new char[r.n+1];
7 if(str) strcpy(r.str, str); if(b) strcpy(r.str+n, b);
8 return r;
9 }

10 };

Now, suppose we need to write the following code:

1 const char* a="Hello"; String b="-World"; String c=a+b;

One may expect that the above code will work as in the previous case. But, the code will not work
because the object which called the operator (the left operand) is of type char*. So, the compiler
will search for an overloaded function in class char* that takes a String parameter, and it
will fail. The compiler will not attempt to search for an overloaded function in class String
because the calling object (left operand) is not of type String.

Where to write a function overloading the + operator that takes a char* as its left operand? It
should be written in class char* to which we do not have access. Even if we have access to
it, it is not a good idea to modify an old tested class for such purpose. The solution is to make such
function global, and make it friend of class String to access its private members easily:

1 class String
2 { //
3 friend String operator + (const char*, const String&);
4 };
5
6 String operator + (const char* a, const String& b)
7 {
8 String r; int na=strlen(a); r.n=na+b.n;
9 if(r.n==0) return r; r.str=new char[r.n+1];

10 if(a) strcpy(r.str, a); if(b.str) strcpy(r.str+na, b.str);
11 return r;
12 }

3

FCAI-CU Programming-2 CS213 Operator overloading Amin Allam

2 Overloading the assignment (=) operator

Consider the following code:

1 int main()
2 {
3 String a="Hello"; // Same as: String a(”Hello”);
4 String b=a; // Same as: String b(a);
5 a.Output(); // Prints: Hello
6 b.Output(); // Prints: Hello
7 return 0;
8 }

The above code works because it actually calls the constructor, not the assignment = operator.

Consider the following code which attempts to use the assignment = operator:

1 String a="Hello"; // Same as: String a(”Hello”);
2 String b; b=a; // Calls the empty constructor then the assignment operator

The above code will compile and run, but it will not work as expected. Since we did not over-
load a copy assignment = operator in class String, the compiler will provide a default copy
assignment operator as follows:

1 class String
2 { //
3 String& operator = (const String& b)
4 {
5 n=b.n; str=b.str;
6 return *this;
7 }
8 };

The problem of the above code is that both strings now share the same area of allocated memory,
because a.str=b.str. So when a or b is destroyed, the destructor will de-allocate the memory
used by the other object as well. The correct way is to overload the copy assignment operator so
as not to let the compiler provide the default one:

1 class String
2 { //
3 String& operator = (const String& b)
4 {
5 n=b.n; if(str) delete[] str; str=0;
6 if(!b.str) return *this;
7 str=new char[n+1]; strcpy(str, b.str);
8 return *this;
9 }

10 };

4

FCAI-CU Programming-2 CS213 Operator overloading Amin Allam

For a similar reason, we overloaded the copy constructor String(const String& s) in the
first program of this lecture so as not to let the compiler provide the problematic default copy
constructor which looks like that:

1 class String
2 { //
3 String(const String& b) : n(b.n), str(b.str) {}
4 };

For other classes like class Fraction, the compiler-provided default copy constructor and
default copy assignment operator are satisfactory.

But why the assignment operator returns *this? The importance of the return value is to make a
statement like this work: x=y=b; which invokes y=b first because of the right associativity of the
assignment operator, then the return value is assigned to x. Since we can just modify the calling
object y and return it, we used String& return type to avoid creating and returning a new object
which is less efficient. We are able to return it by reference because we are sure that its lifetime
continues after the assignment operator is called.

If our implementation does not have a return value (void instead of String&), the program will
work for y=b; but it will not compile for x=y=b;. Even if this behavior is well-described in your
documentation, users of your class will be confused because x=y=b; work well for basic data
types such as int and double. It is good practice to overload operators such that they behave
similarly to their behavior with basic data types.

3 Overloading the += operator

In this section we define the binary += operator so that it appends the right operand String object
to the left operand String object, then returns the modified left operand String object. The
returned object allows statements like this to work: x=y+=b;.

1 class String
2 { //
3 String& operator += (const String& b)
4 {
5 if(b.n==0) return *this;
6 int new_n=n+b.n;
7 char* new_str=new char[new_n+1];
8 if(str) strcpy(new_str, str);
9 if(b.str) strcpy(new_str+n, b.str);

10 n=new_n;
11 if(str) delete[] str;
12 str=new_str;
13 return *this;
14 }
15 };

5

FCAI-CU Programming-2 CS213 Operator overloading Amin Allam

4 Overloading the >> and << operators

Suppose we need the following code to work for class String objects as it works for basic
data types:

1 String a, b;
2 cin>>a>>b; // Assume the user inputs: Hello World
3 cout<<a<<"-"<<b; // Prints: Hello−World

cin is a global object of type istream. That object is somehow associated with the stan-
dard input stream in the C++ library. Since the operator >> is left associative, the statement
cin>>a>>b; is executed by first executing cin>>a, which inputs a from user then returns the
same cin object again so as to let the cin>>b statement executed.

In the above code, the >> operator takes an istream left operand and String right operand.
Therefore, its overloading function can not be a member of class String (we encountered this
situation before when we tried to overload the + operator such that it takes a const char* left
operand and String right operand). We can only overload the >> by adding a member function
in class istream (which is not possible because it is a library class), or by defining a global
function and making it a friend of class String to easily access its members.

1 class String
2 { //
3 friend istream& operator >> (istream&, String&);
4 };
5
6 istream& operator >> (istream& in, String& s)
7 {
8 char buf[200]; buf[0]=0; in>>buf;
9 if(s.str) delete[] s.str;

10 s.n=strlen(buf); s.str=0; if(s.n==0) return in;
11 s.str=new char[s.n+1]; strcpy(s.str, buf);
12 return in;
13 }

Similarly, the << operator can be overloaded as follows (Note that cout is a global object of type
ostream which is associated with the standard output stream in the C++ library):

1 class String
2 { //
3 friend ostream& operator << (ostream&, const String&);
4 };
5
6 ostream& operator << (ostream& out, const String& s)
7 {
8 out<<s.str; return out;
9 }

6

FCAI-CU Programming-2 CS213 Operator overloading Amin Allam

5 Overloading the prefix and postfix ++ operators

Suppose we need to define the unary prefix and postfix ++ operators to work on class Fraction
objects similarly to other numerical data types:

1 Fraction f(3, 5); // f=3/5
2
3 Fraction g = ++f;
4 f.Output(); g.Output(); // Prints: 8/5 8/5
5
6 Fraction h = f++;
7 f.Output(); h.Output(); // Prints: 13/5 8/5

Since the ++ operator is unary (Note that all operators defined in previous sections are binary), it
takes only one operand which is the calling object. Therefore, the overloaded functions should not
take any parameters because they access the calling operand using this. We should overload the
++ operator as follows:

1 class Fraction
2 { //
3 Fraction& operator ++ () // Prefix ++ operator
4 {
5 num += den; // Add by one
6 return *this; // Return the modified value
7 }
8
9 Fraction operator ++ (int) // Postfix ++ operator

10 {
11 Fraction f = *this; // Save the current value
12 num += den; // Add by one
13 return f; // Return the old value
14 }
15 };

Note that the postfix ++ operator does not take an integer parameter as it looks. The int keyword
here is just a way to tell the compiler that we are overloading the postfix operator, not the prefix
one.

7

FCAI-CU Programming-2 CS213 Operator overloading Amin Allam

6 Overloading the brackets [] and parentheses () operators

Suppose we need the [] operator work for class String objects our as it works for arrays:

1 String a = "Hello";
2 cout << a[1] << endl; // Prints: e
3 a[2] = 'x';
4 a.Output(); // Prints: Hexlo

We should overload the [] operator as follows:

1 class String
2 { //
3 char& operator [] (int i) {return str[i];}
4 };

The [] operator takes one parameter, which is the integer inside the brackets. The return value
should be a char& so as to be able to modify that specific character inside the string, such as the
statement a[2]=’x’;.

Overloading the () operator is similar but it can take any number of parameters inside:

1 class IntegerMatrix
2 { //
3 int** mat;
4 int& operator () (int i, int j) {return mat[i][j];}
5 };

The () operator can be unary (if no parameters inside parentheses), binary, or more (because it
can have any number of parameters inside parentheses, including zero). Overloading the () is
interesting because it makes an object looks like a function.

8

FCAI-CU Programming-2 CS213 Operator overloading Amin Allam

7 Type conversion

Consider the following code:

1 String a, b, c;
2 a = "Hello"; // Implicit conversion
3 b = (String) "World"; // Explicit conversion
4 c = static_cast<String>("Prog"); // Explicit conversion
5 a.Output(); b.Output(); c.Output(); // Prints: HelloWorldProg

For the first assignment, because the left operand type is String, the compiler searches in class
String for an overloading of the assignment operator which takes a const char* as param-
eter (the type of the right operand). Since such function does not exist, the compiler will keep
searching for a function in class String which may work if the compiler performed the nec-
essary conversions to match its parameter types. The compiler figures out that it can apply the con-
structor String(const char* cstr) to convert the right operand from const char* to
class String then to invoke the overloaded assignment operator.

For the second and third assignments, which are equivalent, the compiler will immediately search
for a constructor that takes a const char* as parameter so as to convert the right operand to
String as explicitly requested, then it will invoke the overloaded assignment operator.

Therefore, to convert from any data type X to type String, a one-argument constructor is needed
in class String whose parameter type is X. Now, how to convert from a String type to
another data type? We can define a constructor that takes a String parameter in the class of that
data type if possible, or we can add a member function in class String as follows:

1 class String
2 { //
3 operator const char*() const {return str;}
4 };

Which will make the following code works:

1 String a = "Hello";
2 const char* x = a; // Implicit conversion
3 const char* y = (const char*) a; // Explicit conversion
4 const char* z = static_cast<const char*>(a); // Explicit conversion
5 cout<<x<<" "<<y<<" "<<z<<endl; // Prints: Hello Hello Hello

9

