
Cairo University
Faculty of Computers and Artificial Intelligence

Computer Science Department

Programming-2 CS213 Classes Dr. Amin Allam

1 Access specifiers

Access specifiers can be applied to data members and function members of a class. There are
three different access specifiers: public, private, and protected. public members can
be accessed from anywhere. private members can be accessed only from member functions
of the same class, friend functions, and member functions of friend classes. protected
members can be accessed from derived class members (which will be explained in the inheritance
lecture) and from whatever can access private members.

The default access specifier for a class is private, while the default one for a struct is
public. This is actually the only difference between class and struct in C++. Access
specifiers apply to all members listed after them, until a new access specifier appears.

1 class A
2 {
3 int r; // private by default
4 void F() {this->r=1; this->b=2; this->G();} 4 // private
5 private:
6 void G() {r=1; d=2; c=3;} 4 // private
7 // same as: void G() { this−>r=1; this−>d=2; this−>c=3;} because there
8 // are no local variables or parameters with the same names
9 int b; // private

10 public:
11 int c; // public
12 void H() {r=5; b=6; c=7; G();} 4 // public
13 // same as: void H() { this−>r=5; this−>b=6; this−>c=7; this−>G();}
14 private:
15 int d; // private
16
17 friend int foo(int, A*); // foo() is a global function which is a friend of A
18 friend class C; // class C is friend of A. foo() and class C are not members in A
19 };

public members of class A can be accessed from anywhere. Member functions of class A
can access its private members. The global function int foo(A*); can access private
members of class A because it is declared as friend in class A. For the same reason, all
member functions of class C can access private members of class A.

1

FCAI-CU Programming-2 CS213 Classes Amin Allam

The following code illustrates the previous discussion:

1 void fun(A a)
2 {
3 A t;
4 a.F(); a.d=7; 6

5 a.H(); a.c=9; 4

6 t.F(); t.d=7; 6

7 t.H(); t.c=9; 4

8 }
9

10 int foo(int x, A* a)
11 {
12 A t;
13 a->F(); a->d=x+2; 4

14 a->H(); a->c=9; 4

15 t.F(); t.d=7; 4

16 t.H(); t.c=x; 4

17 return 0;
18 }
19
20 class B
21 {
22 A t;
23 void P(A a) {a.H(); t.c=9;} 4

24 void Q(A& a) {t.H(); a.c=2;} 4

25 void W(A* a) {a->H(); t.c=5;} 4

26 void E(A a) {t.G(); a.b=3;} 6

27 };
28
29 class C
30 {
31 A t;
32 void W(A* a) {a->H(); t.c=5;} 4

33 void P(A a) {t.G(); a.b=3;} 4

34 };
35
36 int main()
37 {
38 A* a=new A;
39 a->F(); a->r=7; 6

40 a->H(); a->c=9; 4

41 delete a;
42 return 0;
43 }

2

FCAI-CU Programming-2 CS213 Classes Amin Allam

2 Static members

A class may contain static data members. In contrast to ordinary data member, a static data member
is allocated once before creating any object, and shared between all objects of this class. A static
data member is the same as a global variable, except that it is accessed only through the class
name, or through any object of the class. Similarly to global variables, static data members must
be defined outside class, possibly initialized.

A class may contain static function members. In contrast to ordinary function member, a static
function member is not related to a specific object of this class. Hence the keyword this can not
be used inside such functions, and static member functions can not access non-static data members
or non-static function members. A static function member is the same as a global function, except
that it is accessed only through the class name, or through any object of the class.

1 class S
2 {
3 private:
4 int a;
5 static int b;
6
7 void F() {a=b+x+y+G();} 4

8 static int G() {return b+y;} 4

9 static int U() {return H()+x;} 6

10
11 public:
12 int x;
13 static int y;
14
15 void H() {a=b+x+y+G();} 4

16 static int P() {return G()+b+y;} 4

17 static int V() {return H()+x;} 6

18 };
19 int S::b=4; // Static data members must be defined outside class
20 int S::y; // Initialized to zero by default (as global variables)
21
22 int main()
23 {
24 S::b=5; S::G(); 6 S::y=7; S::P(); 4

25 S s,t;
26 cout<<S::y<<s.y<<t.y<<endl; // Prints: 777
27 s.b=8; s.G(); 6 s.P(); 4

28 s.x=5; s.y=5; t.x=9; t.y=9; 4

29 cout<<s.x<<s.y<<" "<<t.x<<t.y<<endl; // Prints: 59 99
30 return 0;
31 }

3

FCAI-CU Programming-2 CS213 Classes Amin Allam

3 Constructors and destructors

A constructor of a class is a member function which is called whenever an object is created. A
constructor is distinguished from other functions by having the same name of the class, and not
having a return data type (not even void). A constructor may be overloaded, just as any other
function. If the programmer does not define any constructor, the compiler provides a default empty
constructor which does not take any parameters and has empty body. If the programmer defines at
least one constructor, the compiler does not provide the default empty constructor.

When an object is created (as stack or heap object), its data members are constructed first, then the
body of its constructor is called. It is possible to construct data members using non-zero argument
constructors as will be shown in the following examples. A copy constructor is a one-argument
constructor whose parameter is a reference to the same class (the parameter is possibly modified
by const). A copy constructor is invoked whenever an object is passed or returned by value. If
the programmer does not define a default copy constructor, the compiler provides a default copy
constructor which calls the copy constructors of the data members.

All basic data types except references (such as int and int*) have two constructors: empty
constructor and copy constructor. A reference data type (such as int&) has only a one-argument
constructor whose parameter is the type being referenced (such as int).

A destructor of a class is a member function which is called whenever an object is destroyed
(by going out-of-scope for stack objects, and calling delete for heap objects). A destructor is
distinguished from other functions by having the same name of the class preceded by a tilde, and
not having a return data type (not even void). A destructor does not take any parameters and
can not be overloaded. If and only if the programmer does not define any destructor, the compiler
provides a default destructor which has empty body. When an object is destroyed, the body of the
destructor is called, then the destructors of its data members are called.

The following example illustrates the usage of constructors and destructors:

1 class A
2 {
3 public:
4 int v;
5 A() {v=0; cout<<"A empty constructor"<<endl;}
6 A(int x) {v=x; cout<<"A constructor (int)"<<endl;}
7 A(const A& a) {v=a.v; cout<<"A copy constructor"<<endl;}
8 ˜A() {cout<<"A destructor"<<endl;}
9 };

10 class B
11 {
12 public:
13 A a;
14 B() {cout<<"B empty constructor"<<endl;}
15 ˜B() {cout<<"B destructor"<<endl;}
16 };

4

FCAI-CU Programming-2 CS213 Classes Amin Allam

1 int main()
2 {
3 A x; // Prints: A empty constructor
4 A r(4); // Prints: A constructor (int)
5 A z(x); // Prints: A copy constructor
6 A* w=new A; // Prints: A empty constructor
7 A* p=new A(); // Prints: A empty constructor
8 p->v=5;
9 A* q=new A(*p); // Prints: A copy constructor

10 cout<<q->v<<endl; // Prints: 5
11 delete w; // Prints: A destructor
12 delete p; // Prints: A destructor
13 delete q; // Prints: A destructor
14 B s; // Prints: A empty constructor B empty constructor
15 B t(s); // Prints: A copy constructor (calls the default copy constructor of B)
16 return 0;// Prints: B destructor A destructor B destructor A destructor (for t , s)
17 } // A destructor A destructor A destructor (for z , r ,x)

The following example illustrates how to invoke the constructors of data members:

1 class C
2 {
3 public:
4 int a; float b;
5
6 C(int x) : a(x), b(0) {} // Similar to: C(int x) {a=x; b=0;}
7 C(int x, float y) : a(x), b(y) {} // Similar to: C(int x) {a=x; b=y;}
8 };
9

10 class D
11 {
12 public:
13 C c; int a;
14
15 D(int i) : c(i), a(0) {}
16 D(int i, float j) : c(i, j), a(0) {}
17 D(int i, float j, int k) : c(i, j), a(k) {}
18 };

It is possible to use C(int x){a=x; b=0;} in place of C(int x):a(x),b(0){}, because
there is almost no difference between calling the copy constructor on int variables (by the state-
ment int a(x); or int a=x;) and calling the assignment operator on int variables (by the
statements int a; a=x;). But it is not possible to use D(int i){c=i; a=0;} in place of
D(int i):c(i),a(0){} because the first definition attempts to call the empty constructor and
the assignment operator of class C which are not defined.

5

FCAI-CU Programming-2 CS213 Classes Amin Allam

4 The const modifier

A variable modified by the const modifier must take a value in its constructor, and it can never be
modified until this variable is destructed. A const reference variable can be set to a non-const
variable, but a non-const reference variable can not be set to a const variable.

1 int a; a=5; 4

2 const int b; 6 // A constant variable must be initialized
3 const int c=a; 4

4 int const v=a; 4

5 a=c; 4

6 const int& d=a; 4

7 int& e=d; 6 // A non−constant reference variable can not refer to
8 int& f=(int&)d; 4 // a constant variable unless you explicitly cast
9 f=10; 4 // now modifying f will affect d, so d=10

10 int* i=&a; 4

11 int* j=&c; 6 // A pointer to a non−constant integer can not hold the
12 int* k=(int*)&c; 4 // address of a constant integer unless you cast
13 *k=15; 4 // now modifying *k will affect c, so c=15
14 const int* g; 4 // g is a non−constant pointer to a constant integer
15 int const* h; 4 // h is a non−constant pointer to a constant integer
16 h=&a; h=&c; 4

17 *h=10; 6 // h is a pointer to a constant integer
18 int* const x=&a; 4 // x is a constant pointer to a non−constant integer
19 int* const t; 6 // A constant variable must be initialized
20 int* const y=&c; 6 // A pointer to a non−constant integer cannot hold the
21 int* const z=(int*)&c; 4 // address of a constant integer unless you cast
22 *z=20; 4 // now modifying *z will affect c, so c=20
23 z=&a; 6 // z is a constant pointer
24 const int* const p=&a; 4 // p is a constant pointer to a constant integer
25 int const* const q=&c; 4 // q is a constant pointer to a constant integer
26 *q=15; 6 // q is a pointer to a constant integer
27 q=&c; 6 // q is a constant pointer

The parameter of the copy constructor must be a reference so as to avoid the infinite recursion when
the constructor is called within parameter passing. Also, the parameter of the copy constructor of
a class should be modified by const so that it can accept const and non-const variables.

1 class A
2 {public:
3 int v;
4 A(A a) {v=a.v;} 6

5 A(A& a) {v=a.v;} 6 // it compiles, but should be avoided
6 A(const A& a) {v=a.v;} 4

7 };

6

