
Cairo University
Faculty of Computers and Artificial Intelligence

Computer Science Department

Programming-2 CS213 Introduction Dr. Amin Allam

1 Structured programming

Consider the following definitions of Fraction data type and associated functions:

1 struct Fraction
2 {
3 int num; // numerator
4 int den; // denominator
5 };
6
7 void Initialize(Fraction* f, int n, int d=1)
8 {
9 if(d==0) d=1; // Avoid division by zero

10 f->num = n;
11 f->den = d;
12 }
13
14 double ConvertToDecimal(Fraction* f)
15 {
16 double v = (double) f->num / f->den;
17 return v;
18 }
19
20 Fraction Add(Fraction* a, Fraction* b) // Add fraction a to fraction b
21 { // and return the result
22 int new_den = a->den * b->den;
23 int new_num = a->num * b->den + b->num * a->den;
24 Fraction c;
25 Initialize(&c, new_num, new_den);
26 return c;
27 }
28
29 void Output(Fraction* f) // Print fraction f to screen
30 {
31 cout << f->num << "/" << f->den;
32 }

1



FCAI-CU Programming-2 CS213 Introduction Amin Allam

Consider the following program which uses the previously defined data type and functions:

1 int main()
2 {
3 Fraction a, b, c, d;
4
5 Initialize(&a, 0); // Initialize fraction a to zero
6 Initialize(&b, 2, 3); // Initialize fraction b to 2/3
7 Initialize(&c, 7, 4); // Initialize fraction b to 7/4
8 Initialize(&d, 0); // Initialize fraction d to zero
9

10 Output(&a); cout<<endl; // Prints 0/1
11 Output(&b); cout<<endl; // Prints 2/3
12 Output(&c); cout<<endl; // Prints 7/4
13
14 d=Add(&b, &c);
15 Output(&d); cout<<endl; // Prints 29/12
16 cout << ConvertToDecimal(&d) << endl; // Prints 2.42
17
18 return 0;
19 }

As shown in the previous program, the Initialize() function should be called for each con-
structed Fraction object. The benefit of this initialization is to make sure that the fraction
denominator value is never zero, so as to keep each object into a valid state all the time, which
avoids unexpected errors such as division by zero error in the functions ConvertToDecimal()
and Add().

The following program is syntactically valid, and will compile successfully. However, it may cause
the run-time division by zero error while execution:

1 int main()
2 {
3 Fraction a;
4 cout << ConvertToDecimal(&a) << endl; 6 // Compiles, but may cause
5 // runtime division by zero error
6 Fraction b;
7 Initialize(&b, 2, 3);
8 b.den = 0; 6 // Compiles, but moves fraction b into an invalid state
9 cout << ConvertToDecimal(&b) << endl; 6 // Compiles, but causes

10 // runtime division by zero error
11 return 0;
12 }

The following section illustrates an alternative C++ syntax which achieves the same functionality
described in this section while avoiding all mentioned problems.

2



FCAI-CU Programming-2 CS213 Introduction Amin Allam

2 Object oriented programming

The following C++ program achieves the same functionality described in the previous section
while avoiding all mentioned problems:

1 class Fraction
2 {
3 private:
4 int num; // numerator;
5 int den; // denominator;
6
7 public:
8
9 Fraction(int n, int d=1) // The constructor is called whenever

10 { // an object is constructed
11 if(d==0) d=1; // Avoid division by zero
12 this->num = n;
13 this->den = d;
14 }
15
16 double ConvertToDecimal()
17 {
18 double v = (double) this->num / this->den;
19 return v;
20 }
21
22 Fraction Add(Fraction* b) // Add the fraction object which called Add() to b
23 {
24 int new_den = this->den * b->den;
25 int new_num = this->num * b->den + b->num * this->den;
26
27 Fraction c(new_num, new_den);
28 return c;
29 }
30
31 void Output()
32 {
33 cout << this->num << "/" << this->den;
34 }
35 };

The above code is almost equivalent to the code of the previous section. Main differences are: (1)
Data and functions are grouped into one syntactic unit: class. (2) The private and public
modifiers. (3) The first Fraction* parameter of each function is removed, and accessed by the
keyword this. (4) The Initialize() function is replaced by the constructor Fraction().

3



FCAI-CU Programming-2 CS213 Introduction Amin Allam

Consider the following program which uses the previously defined class:

1 int main()
2 {
3 Fraction a(0), b(2,3), c(7,4), d(0); // Objects are initialized by
4 // the constructor Fraction()
5 a.Output(); cout<<endl; // Prints 0/1
6 b.Output(); cout<<endl; // Prints 2/3
7 c.Output(); cout<<endl; // Prints 7/4
8
9 d=b.Add(&c); // Add the fraction object b to the fraction object c

10 // b is accessed through ' this ' keyword, and c is passed as parameter
11 d.Output(); cout<<endl; // Prints 29/12
12 cout << d.ConvertToDecimal() << endl; // Prints 2.42
13
14 return 0;
15 }

A variable of type Fraction is called a Fraction object, or instance of Fraction. All
Fraction objects are initialized by the constructor. The programmer does not need to call an
Initialize() function as before, but he must provide valid parameter values for the construc-
tor when the object is created. All Fraction class member functions must be called through
a Fraction object followed by the dot operator followed by the function name. Alternatively,
class member functions can be accessed through a Fraction pointer followed by the arrow op-
erator followed by the function name. A pointer to the object preceding the dot operator can be
accessed in the called function body through the keyword this. Consider the following codes:

1 Fraction a; 6 // Does not compile because no enough constructor parameters

1 Fraction b(2,3);
2 b.den = 0; 6 // Does not compile because den is private data member

Each Fraction object must be initialized by the constructor (because the constructor is called
whenever an object is created). Also, all private data members can not be accessed from any
function which is not member of the class Fraction. Therefore, we are sure that at any point
in the life-time of any Fraction object, the value of den is never zero, and hence a division by
zero error can never occur.

A division by zero error may occur only if one of the Fraction member functions mistakenly
sets it to zero, which is a mistake by the programmer who implemented class Fraction, not the
programmer who uses it. Therefore, if class Fraction is implemented correctly, it can never
cause a division by zero error regardless of what the users of this class do.

Grouping data and functions in the same syntactic unit is called encapsulation, which improves
readability. Controlling access to class elements from outside the class (by private) is called
information hiding, which improves safety and reliability by pushing responsibilities from client
code (programmers who use the class) down to server code (programmers who create the class).

4


