
Cairo University
Faculty of Computers and Artificial Intelligence

Computer Science Department

Programming-1 CS112 Pointers and references Dr. Amin Allam

1 References

A reference variable is an alias (another name) to another variable. A reference variable is declared
by appending the & sign to a data type. For example:

1 int t=7, r=8;
2 int& q=t; // q is another name for t , any change in q affects t and vice versa
3 q=6; cout<<q<<" "<<t<<endl; // Prints 6 6
4 t=4; cout<<q<<" "<<t<<endl; // Prints 4 4
5 q=r; cout<<q<<" "<<t<<" "<<r<<endl; // Prints 8 8 8
6 q=3; cout<<q<<" "<<t<<" "<<r<<endl; // Prints 3 3 8
7 t=9; cout<<q<<" "<<t<<" "<<r<<endl; // Prints 9 9 8

Note that q is stated to be another name of the variable t in the first statement. q will be another
name of t for the remainder of the code block. The statement q=r; does not make q another
name of r, it just assigns q (and t) to the value of r as normal assignment statement.

Note that q must be stated to be another name of an existing variable in the first statement of
declaration. For example, the following code is wrong:

1 int t=7; int& q; q=t; 6

In comparison to passing by reference, the following two codes are almost equivalent:

1 void Fun(int& q) {q=6;}
2 int main()
3 {
4 int t=7; Fun(t);
5 cout<<t<<endl; // Prints 6
6 return 0;
7 }

1 int main()
2 {
3 int t=7; int& q=t; q=6;
4 cout<<t<<endl; // Prints 6
5 return 0;
6 }

1

FCAI-CU Programming-1 CS112 Pointers and references Amin Allam

2 Pointers

References exist only in C++. Pointers exist in C/C++ and can do the same job of references in
different syntax and meaning. Pointers are useful in other jobs that can not be done by references.

Pointers are category of data types. There exist pointers to int, pointers to float, and so on. A
variable p of type pointer to int is defined as int* p. An int* can hold the address of any
variable of type int. The address of a variable is the location of the starting byte of this variable
in memory. The address-of operator & takes a variable and returns its address. The contents-of
operator * takes a pointer variable and returns the variable whose address is stored in that pointer.

1 int a=5, b=7; // Suppose a in memory locations 1000−1003 and b in 1004−1007
2 int* p; // Suppose p is stored in memory locations 1008−1011
3 p=&a; // p=1000 (the address of a = the address of the first byte of a)
4 cout<<p<<endl; // Prints 1000 (the value of p = the address of a)
5 cout<<*p<<endl; // Prints 5 (the contents of p = the value of a)
6 cout<<&p<<endl; // Prints 1008 (the address of p)
7 p=&b; // p=1004 (the address of b = the address of the first byte of b)
8 cout<<p<<endl; // Prints 1004 (the value of p = the address of b)
9 cout<<*p<<endl; // Prints 7 (the contents of p = the value of b)

10 cout<<&p<<endl; // Prints 1008 (the address of p)

The variables in the previous code are stored in memory as follow:

Variable: a b p

Address: 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
Memory: 5 7 1004

The following example illustrates how to use pointers to do similar effect to pass by reference.
Note that the pointer itself is passed by value in this example:

1 void Fun(int* p) // p will be initialized with the address of b
2 {
3 *p=6; // Same as (*p)=6, Set the contents of p to 6, that is ,
4 // Set the value of the variable whose address is stored in p to 6
5 p=0; // Changing p will not affect q in main() because q is passed by value
6 }
7 int main()
8 {
9 int b=7;

10 Fun(&b); // Pass the address of b
11 cout<<b<<endl; // Prints 6
12 int* q; q=&b; b=5;
13 Fun(q); // Pass the address of b
14 cout<<b<<" "<<*q<<endl; // Prints 6 6
15 return 0;
16 }

2

FCAI-CU Programming-1 CS112 Pointers and references Amin Allam

Note that it is not possible to change the address of a variable. So, the following code is wrong:

1 int t=7; &t=1000; 6

Although a pointer is actually an integer, we can not use int to store a pointer because:
1. The size of a pointer may be different from the size of int.

2. The operations we do on pointers differ from the operations we do on normal variables.

3. The contents-of operator * (and other operations which we will discuss) need to know the
type of the return variable (the type of the variable whose address is stored in that pointer).

3 Dynamic allocation and pointer arithmetic

Suppose we need to allocate an array of integers, but we do not know at compile time how many
integers we need to allocate. For example, the user will determine how many integers the program
will allocate. Static arrays (which we studied previously) can not be used in this situation. We
must use dynamic arrays instead as follows:

1 int n; cin>>n; // Take number of integers from user
2 int* p=new int[n]; // Allocate n integers, let p the address of the first integer
3 *p=8; // Sets the first integer in the array to 8
4 p[0]=8; // Sets the first integer in the array to 8
5 *(p+1)=5; // Sets the second integer in the array to 5
6 p[1]=5; // Sets the second integer in the array to 5
7 *(p+2)=9; // Sets the third integer in the array to 9
8 p[2]=9; // Sets the third integer in the array to 9
9 p++; // Now p advances to contain the address of the second integer

10 cout<<*p++<<endl; // Prints 5 and advances p. Same as {cout<<*p<<endl; p++;}
11 cout<<(*p)++<<endl; // Prints 9 then increases the third integer
12 cout<<*p<<endl; // Prints 10 (the third integer)
13 cout<<*p+5<<endl; // Prints 15 (the third integer plus 5)
14 cout<<*--p<<endl; // Decreases p and prints 5 (the second integer)
15 cout<<++*p<<endl; // Increases the second integer and prints 6
16 p--; // Now p contains the address of the first integer
17 int* q=p+3, num; // Now q contains the address of the fourth integer, num is int
18 num=q-p; // num=3=the number of integers between p and q
19 if(p<q) cout<<"T"; // Prints T
20 cout<<sizeof(p)<<endl; // Prints 8 on 64−bit systems regardless
21 cout<<sizeof(q)<<endl; // of how many integers allocated
22 delete[] p; // Releases the allocated memory to the operating system

Note that adding 1 to an int* actually adds sizeof(int) to the pointer so that it contains the
address of the next integer. Similarly, adding/subtracting any number will actually multiply that
number by sizeof(int) then adds/subtracts it to the pointer.

Subtracting two int* pointers returns the number of elements in-between, which is the difference
divided by sizeof(int).

3

FCAI-CU Programming-1 CS112 Pointers and references Amin Allam

Pointers sharing the same array can be compared, Otherwise, they can not be compared and result
will be meaningless. Pointers cannot be added, multiplied, or divided.

Since sizeof() works in compile time, it can not detect the number of allocated elements and
just returns the space of the pointer itself.

It is also possible to allocate one object, the benefit of this will be clear in other courses:

1 int* p=0; // Initially p does not point to anything
2 p=new int; // Allocate 1 integer and return its address
3 *p=5; // Sets the allocated integer to 5
4 delete p; // Releases the allocated memory to the operating system

Note that 0 is a special address: no memory location has this address. It is used as indicator that
this pointer does not contain any memory address.

A pointer can be used to iterate on static array elements as follows:

1 int a[]={4,5,6};
2 int* p=a; // Same as int* p=&a[0]; The name of array is address of the first element
3 for(int i=0;i<3;i++)
4 a[i]*=*p++; // Multiply each integer by itself and save the result in a[i]
5 for(int i=0;i<3;i++) cout<<a[i]<<" "; // Prints 16 25 36

A pointer can contain the address of a constant (read-only) string which can not be modified if it
is not properly allocated either statically or dynamically.

1 char s[]="Prog"; s[2]='a'; 4 // Array s is statically allocated and initialized
2 const char* r="Hello"; // r contains the address of a read−only string
3 *(r+1)='y'; r[1]='y'; 6 // The characters cannot be modified
4 const char* words[]={"Sea", "Desert", "Air", "Ocean"};
5 const char* p=words[0]; // words[i] contains the address of a read−only string
6 cout<<*p<<endl; // Prints S
7 p=&words[1][0]; // same as: p=words[1];
8 cout<<*p<<endl; // Prints D
9 p=words[2];

10 cout<<p<<endl; // Prints Air
11 const char** q=&words[3]; // words[3] is char*, its address stored in char**
12 cout<<*q<<endl; // Prints Ocean
13 cout<<**q<<endl; // Prints O

The following example combines pointers and references:

1 int x=7;
2 int& r=x;
3 int* p;
4 p=&x;
5 *p=9;
6 cout<<r<<endl; // Prints 9

4

FCAI-CU Programming-1 CS112 Pointers and references Amin Allam

It is possible to construct a 2D array using pointers as follows:

1 int i,j,nr,nc;
2 cin>>nr>>nc; // Get number of rows and number of columns from user
3 int** p=new int*[nr]; // Construct nr pointers to integers
4 for(i=0;i<nr;i++) p[i]=new int[nc]; // For each row, construct nc integers
5 for(i=0;i<nr;i++) for(j=0;j<nc;j++) cin>>p[i][j]; // Do processing
6 for(i=0;i<nr;i++) delete[] p[i]; // Release memory
7 delete[] p; // Release memory

The following is illustration of the case where nr=4 and nc=3:

p
|

p[0] --> p[0][0] p[0][1] p[0][2]
p[1] --> p[1][0] p[1][1] p[1][2]
p[2] --> p[2][0] p[2][1] p[2][2]
p[3] --> p[3][0] p[3][1] p[3][2]

4 Examples

Write a function that swaps two integers using references, and another function that does the same
using pointers.

1 void swap1(int& a, int& b)
2 {
3 int t=a;
4 a=b;
5 b=t;
6 }
7 void swap2(int* p, int* q)
8 {
9 int t=*p;

10 *p=*q;
11 *q=t;
12 }
13 int main()
14 {
15 int x=6,y=7;
16 swap1(x,y);
17 swap2(&x,&y);
18 return 0;
19 }

5

