
Cairo University
Faculty of Computers and Artificial Intelligence

Computer Science Department

Programming-1 CS112 Multi-dimensional arrays Dr. Amin Allam

1 2D arrays

Arrays can have multiple dimensions. A 2D array is an array of 1D arrays. For example, suppose
that a business man is interested in the sales of 4 devices (phones, cameras, keyboards, monitors)
during each of the last 3 months.

1 int a[3][4]; // An array of 3 arrays, a[i ] is the sales of 4 devices for month i
2 // a[3][4] represents a matrix with 3 rows and 4 columns
3 a[0][0]=5; a[0][1]=7; // He sold 5 phones and 7 cameras in the first month
4 a[1][2]=4; a[1][3]=8; // He sold 4 keyboards and 8 monitors in the second month
5 a[2][1]=6; a[2][3]=9; // He sold 6 cameras and 9 monitors in the third month
6 // ... etc

Logically, the variables represent the following matrix which have 3 rows and 4 columns:

a[0][0]=5 a[0][1]=7 a[0][2] a[0][3]
a[1][0] a[1][1] a[1][2]=4 a[1][3]=8
a[2][0] a[2][1]=6 a[2][2] a[2][3]=9

Physically, the variables will be contiguously allocated in memory as follows:

a[0][0] a[0][1] a[0][2] a[0][3] a[1][0] a[1][1] a[1][2] a[1][3]

5 7 - - - - 4 8

a[2][0] a[2][1] a[2][2] a[2][3]

- 6 - 9

Note that int a[3][4] is a 2D-array which contains 3 1D-arrays: a[0], a[1] and a[2].
Each 1D-array of them is composed of 4 integers. a[0] integers come first in memory, a[1]
integers come after, and a[2] integers come last.

2 Simulating 2D arrays

2D arrays can be simulated by 1D arrays using the following function:

1 int Ind(int i, int j, int nc) // Simulates a matrix cell in row i and column j
2 { // where nc is the number of matrix columns
3 return i*nc+j; // There exist i rows before row i, each row has nc elements
4 } // Skip the i rows (i*nc), then go to the j column (+j)

1



FCAI-CU Programming-1 CS112 Multi-dimensional arrays Amin Allam

The following examples uses a 1D array b[12] that simulates the 2D array a[3][4] of the
previous example.

1 int b[3*4]; // An array of 12 elements simulates a 2D array of 3 rows and 4 columns
2 b[Ind(0,0,4)]=5; b[Ind(0,1,4)]=7; // b[0]=1; b[1]=7;
3 b[Ind(1,2,4)]=4; b[Ind(1,3,4)]=8; // b[6]=4; b[7]=8;
4 b[Ind(2,1,4)]=6; b[Ind(2,3,4)]=9; // b[9]=6; b[11]=9;
5 // ... etc

The variables will be contiguously allocated in memory as follows:

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7]

5 7 - - - - 4 8

b[8] b[9] b[10] b[11]

- 6 - 9

3 Multi-dimensional arrays

Arrays can have any number of dimensions. For example, int a[3][4][2] is a 3D-array
which contains 3 2D-arrays: a[0], a[1] and a[2]. Each 2D-array is composed of 4 1D-arrays.
For example, the 2D-array a[0] is composed of the 4 1D-arrays: a[0][0], a[0][1] and
a[0][2]. Each 1D-array is composed of 2 integers.

A 2D array can be initialized as follows:

1 int a[3][4]={{11,12,13,14},{21,22,23,24},{31,32,33,34}};

a[0][0]=11 a[0][1]=12 a[0][2]=13 a[0][3]=14
a[1][0]=21 a[1][1]=22 a[1][2]=23 a[1][3]=24
a[2][0]=31 a[2][1]=32 a[2][2]=33 a[2][3]=34

It is possible to leave the first bracket empty in initialization and when passing the array as param-
eter to a function. However, for any multi-dimensional array, it is not possible to leave any other
bracket other than the first one empty, because the compiler internally simulates them as 1D-arrays
as we did in the previous section (the Ind() function needs to know the number of columns).

1 char a[][7]={"sea", "desert", "air"}; // Array of 3 strings
2 // Each string contains at most 6 chars

A 3D array can be initialized as follows:

1 int a[3][4][2]={{{111,112},{121,122},{131,132},{141,142}},
2 {{211,212},{221,222},{231,232},{241,242}},
3 {{311,312},{321,322},{331,332},{341,342}}};

2



FCAI-CU Programming-1 CS112 Multi-dimensional arrays Amin Allam

4 Examples

1. Write a function that takes a 3x5 matrix and a 5x3 matrix that hold variables of type double
and assigns the second matrix to the transpose of the first one.

1 void Transpose(const double M[3][5], double T[5][3])
2 {
3 int i,j;
4 for(i=0; i<5; i++)
5 for(j=0; j<3; j++)
6 T[i][j]=M[j][i];
7 }

2. Write a function that takes a 3x3 matrix that holds variables of type int and returns true
only if the matrix is symmetric.

1 bool IsSymmetric(const int M[3][3])
2 {
3 int i,j;
4 for(i=0; i<3; i++)
5 for(j=0; j<i; j++)
6 if(M[i][j]!=M[j][i])
7 return false;
8 return true;
9 }

Note that in the previous examples we used the const modifier to indicate that the function is
not going to modify the values of M[][]. This improves code readability. Also, any attempt to
modify values of M[][] inside this function will cause a compiler error.

3


