
Cairo University
Faculty of Computers and Artificial Intelligence

Computer Science Department

Programming-1 CS112 C-Strings Dr. Amin Allam

1 C-Strings

Arrays can be of any type, such as char. A string is a sequence of characters, or an array of
characters. The C programming language provides additional support for handling strings. A C-
String is a character array that contains the string characters followed by the null character '\0'
which has the ascii code of 0. The null character is not part of the string characters, but it serves
to know where the string ends. The null character is an alternative to specifying an integer which
accompanies the string to identify its length.

1 char a[4]={'S', 'e', 'a', 0};
2 cout << a << endl; // Prints: Sea

The above code is an example of the additional support of C for strings. The cout<< detects that
a is a string, because it is defined as char array. The cout<< prints all characters of a on screen,
until it finds the null character 0 and then it stops printing. The null character is not printed, but
it is just used by cout<< to know when the array stops. Note that we must allocate an array of
size at least 4, which is larger than the string length by 1, in order to allocate space to hold the null
character.

The cin>> also supports strings. The following code will take a string from the user. The cin>>
will take a sequence of characters entered by the user and stops when it encounters an empty space
(space, tab, or end of line). The cin>> will add the null character to the end of the input string.

1 char a[10]; // This string can hold up to 9 characters
2 cin >> a;

In the above example, if the user entered “Desert” followed by empty space, the array will look
like the following in memory (the dashes - mean garbage values):

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

'D' 'e' 's' 'e' 'r' 't' '\0' - - -

The values stored in memory are actually the ascii codes that correspond to these characters. We
write the characters inside quotes only for clarity.

Note that although cout<< and cin>> support char array, they do not support other array types.
For example, this code is wrong:

1 int a[4]={1, 2, 3, 0};
2 cout << a << endl; 6

1



FCAI-CU Programming-1 CS112 C-Strings Amin Allam

C provides a shortcut for initializing strings without specifying the size in brackets. Instead of
writing the null character, we can use double quotes and C will append the null character:

1 char a[4]={'S', 'e', 'a', 0}; 4

2 char b[4]={'S', 'e', 'a'}; 4 // Unused spaces are filled by zeros
3 char c[] ={'S', 'e', 'a', 0}; 4

4 char e[] ={'S', 'e', 'a'}; 6 // The compiler will count as 3 not 4
5 char d[] ="Sea"; 4 // The compiler will add 0 and count 4

Since array b is initialized and its size is larger than the number of initialized characters, the non-
initilaized characters are set to 0 by default, so b[3] will contain 0 and b will be equivalent to a.
Array e is valid, but it is not C-String. For example, cout<<e will not work properly since it will
not find the null character so it will not know where the string ends. Array d is a C-String, since
the double quotes '' '' will direct the compiler to consider it as C-String. The compiler adds the null
character to the end and sets the array size to 4. Array d is a C-String, since the double quotes ''
''will direct the compiler to consider it as C-String. The compiler adds the null character to the end
and sets the array size to 4.

Note that there is a big difference from the printed character '0' (digit zero) which has ascii code
of 48 and the non-printed null character '\0' which has ascii code of 0.

2 sizeof() operator

sizeof() operator takes variable, array, or data type and returns its allocated size in memory in
bytes, as follows:

1 char c;
2 char a[10]="Sea";
3 int t;
4 int b[10]={1,2,3,4,5};
5 int r[]={1,2,3,4,5};
6 cout << sizeof(char) << endl; // Prints 1 since a char takes one byte
7 cout << sizeof(c) << endl; // Prints 1 since a char takes one byte
8 cout << sizeof(a[6]) << endl; // Prints 1 since a char takes one byte
9 cout << sizeof(int) << endl; // Prints 4 since an int takes 4 bytes

10 cout << sizeof(t) << endl; // Prints 4 since an int takes 4 bytes
11 cout << sizeof(b[2]) << endl; // Prints 4 since an int takes 4 bytes
12 cout << sizeof(a) << endl; // Prints 10 since a[] allocates 10 char variables
13 cout << sizeof(b) << endl; // Prints 40 since b[] allocates 10 int variables
14 cout << sizeof(r) << endl; // Prints 20 since r[] allocates 5 int variables
15 cout << sizeof(r)/sizeof(int) << endl; // Prints 5 since r[] allocates 5 ints
16 cout << sizeof(r)/sizeof(r[0]) << endl; // Prints 5 since r[] allocates 5 ints

2



FCAI-CU Programming-1 CS112 C-Strings Amin Allam

3 Built-in functions

A built-in function is a function which is already implemented. We can use a built-in function if
we include the appropriate header and call it using appropriate parameters from inside our code. In
this section, we discuss a few built-in functions that deal with C-Strings. All functions discussed
in this section need to include the cstring header:

1 #include <cstring>
2 using namespace std;

The strlen() function takes a C-String and returns the number of characters inside it. strlen()
works by counting all characters of the parameter array and stops when it finds the null character.
The null character is not counted but used only to stop counting. The following example illustrates
the difference between sizeof() and strlen():

1 char a[10]="Sea";
2 cout << sizeof(a) << endl; // Prints 10 since a[] allocates 10 char variables
3 cout << strlen(a) << endl; // Prints 3 since a[] contains 3 characters

The strcmp() function compares two C-Strings. It returns 0 if the two strings are equal. It
returns a positive integer if the first string is lexicographically larger than the second string. Oth-
erwise it returns a negative number. The function compares the first letters of each string, if they
have different ascii codes, it returns a non-zero integer, otherwise it compares the second letters
of each string. The function is case-sensitive and all comparisons are based on the ascii codes as
illustrated by examples:

1 int a;
2 a=strcmp("sea", "sea"); // a=0 since the two strings are the same
3 a=strcmp("tea", "sea"); // a>0 since the ascii code of 't' is larger than of ' s '
4 a=strcmp("sea", "tea"); // a<0 since the ascii code of 's' is smaller than of ' t '
5 a=strcmp("sea", "t"); // a<0 since the ascii code of 's' is smaller than of ' t '
6 a=strcmp("sea", "sun"); // a<0 since the first letter equal and 'e'<'u '
7 a=strcmp("" , "sea"); // a<0 since the first string is empty and the second not
8 a=strcmp("s" , "sea"); // a<0 since the first string is prefix of the second
9 a=strcmp("Sea", "sea"); // a<0 since the ascii code of 'S' is smaller than of ' s '

10 a=strcmp("SEA", "sea"); // a<0 since the ascii code of 'S' is smaller than of ' s '
11 a=strcmp("sea", "set"); // a<0 since the ascii code of 'a' is smaller than of ' t '

The strcpy() function takes two C-Strings and copies the second one into the first one. The
order of parameters is specified to be similar to the assignment operator:

1 char a[10]="Sea";
2 char b[8]="Sea";
3 char c[7];
4 strcpy(c, "Desert");
5 strcpy(b, c);
6 cout << b << " " << c << endl; // Prints ”Desert Desert”

3



FCAI-CU Programming-1 CS112 C-Strings Amin Allam

The strcat() function takes two C-Strings and appends the second one to the first one. The
order of parameters is specified to be similar to the += operator:

1 char a[20]="Sea";
2 char b[]="Desert";
3 strcat(a, " and ");
4 strcat(a, b);
5 cout << a << endl; // Prints ”Sea and Desert”

4 Examples

1. Write a function that takes three strings. After the function ends, the first string should be
composed of the concatenation of the second and third strings.

1 void Concatenate(char a[], char b[], char c[])
2 {
3 strcpy(a,b); // Copy b[] into a[] (b[] string overwrites old a [] string )
4 strcat(a,c); // Append c[] to a[]
5 }

Another solution:

1 void Concatenate(char a[], char b[], char c[])
2 {
3 a[0]=0; // Let a[] be an empty string
4 strcat(a,b); // Append b[] to a[]
5 strcat(a,c); // Append c[] to a[]
6 }

2. Write a function that takes a string and returns true if the string is palindrome. A palindrome
string is read the same from left to right and from right to left, such as “arora”.

1 bool IsPalindrome(char a[])
2 {
3 int i, n=strlen(a);
4 for(i=0; i<n/2; i++)
5 {
6 if(a[i]!=a[n-1-i])
7 return false;
8 }
9 return true;

10 }

4



FCAI-CU Programming-1 CS112 C-Strings Amin Allam

3. Write a function that takes a string and converts all existing uppercase letters into lowercase.

1 void ToLower(char a[])
2 {
3 int i, n=strlen(a);
4 for(i=0; i<n; i++)
5 if(a[i]>='A' && a[i]<='Z') // if a[i] is uppercase letter
6 {
7 a[i]-='A'; // Now a[i] is 0 for 'A', 1 for 'B' and so on
8 a[i]+='a'; // Now a[i] is 'a' for 0, 'b' for 1 and so on
9 }

10 }

Another solution:

1 void ToLower(char a[])
2 {
3 for(int i=0; a[i]!=0; i++) // Continue as we do not reach the null char
4 if(a[i]>='A' && a[i]<='Z') // If a[i] is uppercase letter
5 a[i]=a[i]-'A'+'a'; // Convert a[i] into lowercase letter
6 }

Another solution:

1 void ToLower(char a[])
2 {
3 for(int i=0; a[i]; i++) // Continue as we do not reach the null character
4 if(a[i]>='A' && a[i]<='Z') // If a[i] is uppercase letter
5 a[i]=a[i]-'A'+'a'; // Convert a[i] into lowercase letter
6 }

The last solution replaces a[i]!=0 by a[i]. When a value (such as a[i]) is put in place
of a boolean expression, it is treated as false only if it equals 0, otherwise it is treated as
true if it is non-zero.

4. Write a function that converts string to integer.

1 int StringToInt(char s[])
2 {
3 int i, num=0;
4 for(i=0; s[i]; i++) // Start from the most significant digit which is s [0]
5 { // Stop when s[i] equals 0 (end of string)
6 num=num*10+(s[i]-'0');
7 } // Suppose s=”456”, num: 0 −> 0*10+4=4 −> 4*10+5=45 −> 45*10+6=456
8 return num;
9 }

5



FCAI-CU Programming-1 CS112 C-Strings Amin Allam

5. Write a function that reverses a string. For example: “mark”→ “kram”.

1 void Reverse(char s[])
2 {
3 int i, n=strlen(s);
4
5 for(i=0;i<n/2;i++)
6 {
7 // swap(s[i], s[n−1−i])
8
9 char t=s[i];

10 s[i]=s[n-1-i];
11 s[n-1-i]=t;
12 }
13 }

6. Write a function that converts integer to string.

1 void IntToString(char s[], int num) // num is input, s is output
2 {
3 int cnt=0; // Number of converted characters until now
4
5 while(num>0)
6 {
7 int digit=num%10; // Get the least significant digit
8 s[cnt++]=digit+'0'; // To get the ascii code of the digit, add to it '0'
9 num/=10; // Remove the least significant digit from num

10 }
11
12 if(cnt==0) s[cnt++]='0'; // Special case for the 0 number
13 s[cnt]=0; // Add the null character to the end of string
14
15 Reverse(s);
16 }

6


