0NN Nk WIN -

T T e S S e S S TG S Y
O 001N N B~ W — O O

z Cairo University
ﬁ Faculty of Computers and Artificial Intelligence

s Computer Science Department
Programming-1 CS112 Conditionals Dr. Amin Allam

1 Boolean expressions

A bool variable can store one of two values: true or false. Any integer variable can be treated as
boolean variable where the value O is equivalent to false, and any other value is equivalent to true.
An boolean expression consists of a relational or logical operator and its operands. It returns the
value 1 if it evaluates to true, and O if it evaluates to false.

Expression | Returns true when: ‘

a <b a is less than b
a>b a is greater than b
a ==>b a equals b
a !'=b a does not equal b
a <= b a is less than or equal b
a >= b a is greater than or equal b
a && b (a is true) and (b is true)
a |l b (a is true) or (b is true) or (both are true)
la a is false
int a=17, b=5, c¢=8, x=6; //Defines and initializes 4 integer variables
bool p, g=false; // Defines 2 boolean variables and initializes one of them
x = (a > b); // Stores 1 in x
p = (a >= b); // Stores true in p
qg=a > b; // Stores true in q
g = true; // Stores true in q
P ey // Stores false in p
p = -5; // Stores true in p
q = 0; // Stores false in q
q = false; // Stores false in q
X = a <= Db; // Stores O in x since a is not less than or equal b
p = a < b; // Stores false in p
p = (a == b); // Stores false in p since a does not equal b
/I The operator == returns true only if the operands are equal
/I The operator = assigns the right value to the left variable
p=a !=Db; // Stores true in p since a does not equal b
p = (a>b)&& (b<c); /I Stores true in p since both a>b is true and b<c is true
p = (al!=b) || (b>c); //Stores true in p since al=b is true
p = (a<b) || (b>c); /I Stores false in p since a<b is false and b>c is false

~N NN B W —_

B W N =

LW N -

FCAI-CU Programming-1 CS112 Conditionals Amin Allam

The following table summarizes properties of the previously studied operators (ordered in groups
from highest precedence to lowest precedence):

Operator \ Description Associativity \ Type \ Example
++ - Postfix increment and decrement left toright | Unary | a++

+ - Unary plus and minus righttoleft | Unary | —-a

++ —— Prefix increment and decrement right to left | Unary | ++a

! Logical NOT righttoleft | Unary | !a
(type) C-style cast right to left Unary | (double)a
x /% Multiplication, division, and remainder | left to right Binary | axb

+ - Addition and subtraction left to right | Binary | a+b

< <= Relational < and < left to right | Binary | a >= Relational > and > left to right Binary | a>b

== I= Relational = and # left to right | Binary | a==b

& & Logical AND left to right | Binary | a&&b

|] Logical OR left to right Binary | a| |b

= Assignment right to left | Binary | a=b

x= /= %= | Compound assignment right to left | Binary | ax=b
+= -= Compound assignment right to left | Binary | a+=b

Assume the expression of the second line of the following code:

int a=17, b=5, c=4, d=8; bool x;
X =a<=Db ||] ¢c <d&& b > c;

The expression may be evaluated internally by the compiler as follows:

int a=17, b=5, c=4, d=8; bool x;
X =a<=Db || ¢c<dé&& b > c;

x = false || ¢ < d && b >= ¢c;

x = false || true && b >= c;

x = false || true && true;

x = false | | true;

X = true;

An important property called short circuit is explained by the following examples:

int a=17, b=5, c=4, d=8; bool x;

x=a>b || ¢c>d&& b <= c;
X = true || ¢ > d && b <= ¢c;
X = true; /I No need to evaluate the remainder of the expression

int a=17, b=5, c=4, d=8; bool x;

X =a<b && c <d && b > c;

x = false && c < d && b >= c;

x = false; // No need to evaluate the remainder of the expression

OO\ N KW~

FCAI-CU Programming-1 CS112 Conditionals Amin Allam

2 The if statement

An if statement in the form if{ expression) statement; will execute statement only if expression
is true (or any value other than 0). If expressionis false (or 0), statement will not be
executed. statement can be replaced by a block of statements: {statementl; statement2;
. . .statementn; } all these statements will be executed only if expression is true. The
following example illustrates a simple program that computes the maximum of three integers.

#include <iostream>
using namespace std;
int main ()
{
int a, b, c;
cout << "Enter three integers: ";
cin >> a >> b >> ¢;

int m = a; // Initially set the current maximum value to a
if(b > m) m = b; //Ifbislarger than the current maximum, update it
if(c > m) m c; //'If cis larger than the current maximum, update it

cout << "The maximum = " << m << endl;
return 0;

There are several forms of if statement as follows:
o if(expr) stmt; Executes stmt only if expr is true.

o if(expr) stmtl; else stmt2;
This is equivalent to: if{expr) stmtl; if(!expr) stmt2;
If expr is true, stmt1 is executed. Otherwise, stmt 2 is executed if expr is false.

o if(exprl) stmtl; else if(expr2) stmt2;

This is equivalent to: if{exprl) stmtl; else {if(expr2) stmt2;}

If exprl istrue, stmt1 is executed. Otherwise, we check expr2.
If exprl is false and expr?2 is true, stmt 2 is executed.

o if(exprl) stmtl; else if(expr2) stmt2; else stmt3;

This is equivalent to: if(exprl) stmtl; else {if(expr2) stmt2; else stmt3}
If exprl istrue, stmt1 is executed. Otherwise, we check expr2.

If exprl is false and expr2 is true, stmt 2 is executed.

If exprl is false and expr?2 is false, stmt 3 is executed.

In all these forms, any stmt can be replaced by a block of statements: {stmtl; stmt2;

. .stmtn; }. Note that the if statement is just a statement: In the last form above, the else
statement of the first if is another if statement. Note that in the absence of curly brackets {}, the
else statement is associated to the last preceding i £ condition.

o

p—

— O 000 IO N AW

FCAI-CU Programming-1 CS112 Conditionals Amin Allam

3 The ternary conditional operator ?:

e exprl ?expr2:expr3;
If exprl is true, the operator ? : executes and returns the value of expr2. Otherwise, the operator
executes and returns the value of expr 3. For example, the following two codes are equivalent:

N =

int y, x = 10;
y = x > 9 2?2 100 : 200;

int y, x = 10;
if(x > 9) y = 100; else y = 200;

4 The switch statement

switch(expr)

case constantl: statementsl break;
case constant2: statements?2 break;
case constant3: statements3 break;
default: statements4

}

This is equivalent to:

if(expr==constant1) {statements1}
else if(expr==constant2) {statements2}
else if(expr==constant3) {statements3}
else {statements4}

The curly brackets {} around statements are essential for the if statement, while they are not
required for the switch statement. The break; statement is required in order to end the execution
of the switch statement, otherwise, execution continues until the first break; encountered, or the
end of the switch statement indicated by the curly bracket }. The default : case can be removed.
The switch statement works when the expr evaluates to character or integer value.

char a='z"'; int b=6, c=7;

if(a=='y")

cout<<b<<endl; // Not executed
cout<<c<<endl; // Prints 7

if (b==6) {cout<<a<<" "; cout<<c<<endl;} // Prints z 7

switch (a)

{

case 'a': cout<<a; break; // Not executed
case 'z': cout<<b<<endl; // Prints 6
case 'y': cout<<c<<endl; // Prints 7

