
Cairo University
Faculty of Computers and Artificial Intelligence

Computer Science Department

Programming-1 CS112 Conditionals Dr. Amin Allam

1 Boolean expressions

A bool variable can store one of two values: true or false. Any integer variable can be treated as
boolean variable where the value 0 is equivalent to false, and any other value is equivalent to true.
An boolean expression consists of a relational or logical operator and its operands. It returns the
value 1 if it evaluates to true, and 0 if it evaluates to false.

Expression Returns true when:
a < b a is less than b
a > b a is greater than b
a == b a equals b
a != b a does not equal b
a <= b a is less than or equal b
a >= b a is greater than or equal b
a && b (a is true) and (b is true)
a || b (a is true) or (b is true) or (both are true)
!a a is false

1 int a=17, b=5, c=8, x=6; // Defines and initializes 4 integer variables
2 bool p, q=false; // Defines 2 boolean variables and initializes one of them
3 x = (a > b); // Stores 1 in x
4 p = (a >= b); // Stores true in p
5 q = a > b; // Stores true in q
6 q = true; // Stores true in q
7 p = !c; // Stores false in p
8 p = -5; // Stores true in p
9 q = 0; // Stores false in q

10 q = false; // Stores false in q
11 x = a <= b; // Stores 0 in x since a is not less than or equal b
12 p = a < b; // Stores false in p
13 p = (a == b); // Stores false in p since a does not equal b
14 // The operator == returns true only if the operands are equal
15 // The operator = assigns the right value to the left variable
16 p = a != b; // Stores true in p since a does not equal b
17 p = (a>b)&&(b<c); // Stores true in p since both a>b is true and b<c is true
18 p = (a!=b)||(b>c); // Stores true in p since a!=b is true
19 p = (a<b)||(b>c); // Stores false in p since a<b is false and b>c is false

1

FCAI-CU Programming-1 CS112 Conditionals Amin Allam

The following table summarizes properties of the previously studied operators (ordered in groups
from highest precedence to lowest precedence):

Operator Description Associativity Type Example
++ -- Postfix increment and decrement left to right Unary a++
+ - Unary plus and minus right to left Unary -a
++ -- Prefix increment and decrement right to left Unary ++a
! Logical NOT right to left Unary !a
(type) C-style cast right to left Unary (double)a

* / % Multiplication, division, and remainder left to right Binary a*b
+ - Addition and subtraction left to right Binary a+b
< <= Relational < and ≤ left to right Binary a >= Relational > and ≥ left to right Binary a>b
== != Relational = and 6= left to right Binary a==b
&& Logical AND left to right Binary a&&b
|| Logical OR left to right Binary a||b
= Assignment right to left Binary a=b

= /= %= Compound assignment right to left Binary a=b
+= -= Compound assignment right to left Binary a+=b

Assume the expression of the second line of the following code:

1 int a=17, b=5, c=4, d=8; bool x;
2 x = a <= b || c < d && b >= c;

The expression may be evaluated internally by the compiler as follows:

1 int a=17, b=5, c=4, d=8; bool x;
2 x = a <= b || c < d && b >= c;
3 x = false || c < d && b >= c;
4 x = false || true && b >= c;
5 x = false || true && true;
6 x = false || true;
7 x = true;

An important property called short circuit is explained by the following examples:

1 int a=17, b=5, c=4, d=8; bool x;
2 x = a > b || c > d && b <= c;
3 x = true || c > d && b <= c;
4 x = true; // No need to evaluate the remainder of the expression

1 int a=17, b=5, c=4, d=8; bool x;
2 x = a < b && c < d && b >= c;
3 x = false && c < d && b >= c;
4 x = false; // No need to evaluate the remainder of the expression

2

FCAI-CU Programming-1 CS112 Conditionals Amin Allam

2 The if statement

An if statement in the form if(expression) statement; will execute statement only if expression
is true (or any value other than 0). If expression is false (or 0), statement will not be
executed. statement can be replaced by a block of statements: {statement1; statement2;
...statementn;} all these statements will be executed only if expression is true. The
following example illustrates a simple program that computes the maximum of three integers.

1 #include <iostream>
2 using namespace std;
3 int main()
4 {
5 int a, b, c;
6 cout << "Enter three integers: ";
7 cin >> a >> b >> c;
8
9 int m = a; // Initially set the current maximum value to a

10 if(b > m) m = b; // If b is larger than the current maximum, update it
11 if(c > m) m = c; // If c is larger than the current maximum, update it
12
13 cout << "The maximum = " << m << endl;
14 return 0;
15 }

There are several forms of if statement as follows:

• if(expr) stmt; Executes stmt only if expr is true.

• if(expr) stmt1; else stmt2;
This is equivalent to: if(expr) stmt1; if(!expr) stmt2;
If expr is true, stmt1 is executed. Otherwise, stmt2 is executed if expr is false.

• if(expr1) stmt1; else if(expr2) stmt2;
This is equivalent to: if(expr1) stmt1; else {if(expr2) stmt2;}
If expr1 is true, stmt1 is executed. Otherwise, we check expr2.
If expr1 is false and expr2 is true, stmt2 is executed.

• if(expr1) stmt1; else if(expr2) stmt2; else stmt3;
This is equivalent to: if(expr1) stmt1; else {if(expr2) stmt2; else stmt3}
If expr1 is true, stmt1 is executed. Otherwise, we check expr2.
If expr1 is false and expr2 is true, stmt2 is executed.
If expr1 is false and expr2 is false, stmt3 is executed.

In all these forms, any stmt can be replaced by a block of statements: {stmt1; stmt2;
...stmtn;}. Note that the if statement is just a statement: In the last form above, the else
statement of the first if is another if statement. Note that in the absence of curly brackets {}, the
else statement is associated to the last preceding if condition.

3

FCAI-CU Programming-1 CS112 Conditionals Amin Allam

3 The ternary conditional operator ?:

• expr1?expr2:expr3;
If expr1 is true, the operator ?: executes and returns the value of expr2. Otherwise, the operator
executes and returns the value of expr3. For example, the following two codes are equivalent:

1 int y, x = 10;
2 y = x > 9 ? 100 : 200;

1 int y, x = 10;
2 if(x > 9) y = 100; else y = 200;

4 The switch statement

switch(expr)
{
case constant1: statements1 break;
case constant2: statements2 break;
case constant3: statements3 break;
default: statements4
}

This is equivalent to:

if(expr==constant1) {statements1}
else if(expr==constant2) {statements2}
else if(expr==constant3) {statements3}
else {statements4}

The curly brackets {} around statements are essential for the if statement, while they are not
required for the switch statement. The break; statement is required in order to end the execution
of the switch statement, otherwise, execution continues until the first break; encountered, or the
end of the switch statement indicated by the curly bracket }. The default: case can be removed.
The switch statement works when the expr evaluates to character or integer value.

1 char a='z'; int b=6, c=7;
2 if(a=='y')
3 cout<<b<<endl; // Not executed
4 cout<<c<<endl; // Prints 7
5 if(b==6) {cout<<a<<" "; cout<<c<<endl;} // Prints z 7
6 switch(a)
7 {
8 case 'a': cout<<a; break; // Not executed
9 case 'z': cout<<b<<endl; // Prints 6

10 case 'y': cout<<c<<endl; // Prints 7
11 }

4

