
Cairo University
Faculty of Computers and Artificial Intelligence

Computer Science Department

Programming-1 CS112 Arithmetic expressions Dr. Amin Allam

1 Variables

A variable occupies a number of bytes in memory and can store values. There are several types of
variables such as: char, int, double.

A char variable can store a character such as: 'A' , '(' , 't', ' ' , '7' , '-'.
An int variable can store an integer value such as: 14 , 0 , −3 , 1023.
A double variable can store a decimal value such as: 6.74 , 3.14 , −189.1 , 45.

The name of a variable is a sequence of letters such that:
• Each letter in the variable name can be:

(1) English letter ('A'. . .'Z', 'a'. . .'z').
(2) Underscore (' ').
(3) Digit ('0'. . .'9').

• A variable name can not start with a digit.

1 int 3a, 9A, 8_u, a@b, ab!m; 6 // Incorrect variable names
2 int _3a, A_x, _Y4r, p_ta, O4; 4 // Correct variable names

2 Expressions

An expression consists of operator and data and performs a specific operation on the data. Data
can be variables or values or both according to the used operator. Data associated to an operator
are called operands. For example, the assignment (=) operator takes a variable or value on its right
and assigns it to a variable on its left. Examples:

1 int a=17, b=5, c=8, x=6; 4 // Defines and initializes 4 integer variables
2
3 x = 5; 4 // Stores 5 in x
4 x = a; 4 // Stores 17 (the value of a) in x, does not change a
5 9 = 5; 6 // Can not put value in the left of =
6 7 = a; 6 // Can not put value in the left of =
7 x = 17 + 5; 4 // Stores 22 in x
8 x = a + b; 4 // Stores 22 in x, does not change a or b
9 x = 17 + b; 4 // Stores 22 in x, does not change b

10 c = x + 5; 4 // Stores 27 in c, does not change x
11 22 = x + 5; 6 // Can not put value in the left of =

1



FCAI-CU Programming-1 CS112 Arithmetic expressions Amin Allam

The following examples illustrate the usage of various expressions:

1 int a=17, b=5, c=4, x;
2 double p=17, q=5, y;
3 x = 5 + 4; // Stores 5 + 4 = 9 in x
4 x = (5 + 4); // Stores 5 + 4 = 9 in x
5 x = b + c; // Stores 5 + 4 = 9 in x
6 x = 5 * 4; // Stores 5 × 4 = 20 in x
7 x = b * c; // Stores 5 × 4 = 20 in x
8 x = (b * c); // Stores 5 × 4 = 20 in x
9 x = 17 / 5; // Stores 17 div 5 = 3 in x

10 x = a / b; // Stores 17 div 5 = 3 in x
11 x = 17 % 5; // Stores 17 mod 5 = 2 in x
12 x = a % b; // Stores 17 mod 5 = 2 in x
13 y = 17 / 5; // Stores 17 div 5 = 3 in y
14 y = a / b; // Stores 17 div 5 = 3 in y
15 y = 17 % 5; // Stores 17 mod 5 = 2 in y
16 y = a % b; // Stores 17 mod 5 = 2 in y
17 y = 17.0 / 5.0; // Stores 17 ÷ 5 = 3.4 in y
18 y = 17.0 / 5; // Stores 17 ÷ 5 = 3.4 in y
19 y = 17 / 5.0; // Stores 17 ÷ 5 = 3.4 in y
20 y = p / q; // Stores 17 ÷ 5 = 3.4 in y
21 y = p % q; 6 // Undefined operation
22 y = (double)a / (double)b; // Stores 17 ÷ 5 = 3.4 in y
23 y = (double)a / b; // Stores 17 ÷ 5 = 3.4 in y
24 y = a / (double)b; // Stores 17 ÷ 5 = 3.4 in y
25 x = 17.0 / 5.0; // Evaluates 17 ÷ 5 = 3.4 then converts to integer 3
26 x = p / q; // by discarding fractional part and stores 3 in x
27 x = 17 + 4 * 5; // Stores 17 + (4 × 5) = 37 in x
28 x = a + c * b; // Stores 17 + (4 × 5) = 37 in x
29 x = 17 + (4 * 5); // Stores 17 + (4 × 5) = 37 in x
30 x = (17 + 4) * 5; // Stores (17 + 4) × 5 = 105 in x
31 x = 4 + 17 / 5; // Stores 4 + (17 div 5) = 7 in x
32 x = c + (a / b); // Stores 4 + (17 div 5) = 7 in x
33 x = (4 + 17) / 5; // Stores (4 + 17) div 5 = 4 in x
34 y = 4.0 + 17 / 5; // Stores 4 + (17 div 5) = 7 in y
35 y = 4 + 17.0 / 5; // Stores 4 + (17 ÷ 5) = 7.4 in y
36 y = (double)(4 + 17) / 5; // Stores (4 + 17) ÷ 5 = 4.2 in y
37 y = (4 + 17) / (double)5; // Stores (4 + 17) ÷ 5 = 4.2 in y
38 y = (4 + 17) / 5.0; // Stores (4 + 17) ÷ 5 = 4.2 in y
39 y = (c + p) / b; // Stores (4 + 17) ÷ 5 = 4.2 in y
40 y = (c + (double)a) / b; // Stores (4 + 17) ÷ 5 = 4.2 in y
41 x = a - b - c; // Stores (17 − 5) − 4 = 8 in x
42 x = (a - b) - c; // Stores (17 − 5) − 4 = 8 in x
43 x = a - (b - c); // Stores 17 − (5 − 4) = 16 in x

2



FCAI-CU Programming-1 CS112 Arithmetic expressions Amin Allam

The operators in the previous examples has order of precedence as follows (ordered from highest
precedence to lowest precedence):

Operator Associativity Type
(type) right to left Unary
* / % left to right Binary
+ - left to right Binary
= right to left Binary

A unary operator takes one operand, while a binary operator takes two operands.
If an expression contains sub-expressions with operators from the previous table, the association
of operators to its operands is done in the following order:
• Associate what in parentheses ().
•Associate the type-cast (type) to its right operand. A type-cast constructs a temporary variable
of the specified type and assigns to it the value of its right operand.
• Associate the *, / and % operators to its left and right operands,
• Associate the + and - operators to its left and right operands.
• Associate the = operators to its left and right operands.
If there are adjacent operators with the same order of precedence, they are associated in the order
shown in the column “Associativity”.

Assume the expression of the second line of the following code:

1 int a=17, b=5, c=4, d=8; double x;
2 x = d = a - b - (6 + b) * c / (double) d;

The expression may be evaluated internally by the compiler as follows:

1 int a=17, b=5, c=4, d=8; double x;
2 x = d = a - b - (6 + b) * c / (double) d; // Evaluate inside parentheses
3 x = d = a - b - 11 * c / (double) d; // Type−cast operation
4 x = d = a - b - 11 * c / 8.0; // Multiplication (left to right assoc)
5 x = d = a - b - 44 / 8.0; // Division
6 x = d = a - b - 5.5; // First subtraction (left to right assoc)
7 x = d = 12 - 5.5; // Subtraction
8 x = d = 6.5; // Second assignment (right to left assoc), store the value 6 in d
9 x = 6; // Assignment, store the value 6 in x

The following example explains the unary minus, increment and decrement operators:

1 int a=0, b=5, c=1;
2 a = -b; // Store the value −5 in a (unary minus)
3 a = c + 1; // Store the value 2 in a, does not change c
4 a + 1; // This statement has no effect, does not change a
5 a = a + 1; // Store the value 3 in a
6 a++; // Increase a by 1, store the value 4 in a
7 ++a; // Increase a by 1, store the value 5 in a
8 --a; // Decrease a by 1, store the value 4 in a

3



FCAI-CU Programming-1 CS112 Arithmetic expressions Amin Allam

The following are more examples on the increment and decrement operators:

1 int a=4, b, c;
2 b = ++a; // The same as {++a; b=a;} (a=5, b=5)
3 b = a++; // The same as {b=a; a++;} (b=6, a=7)
4 c = b++ +a++; // The same as {c=b+a; b++; a++;} (c=13, b=7, a=8)
5 c = ++b+ ++a; // The same as {++b; ++a; c=b+a;} (b=8, a=9, c=17)
6 c = b++ + ++a; // The same as {++a; c=b+a; b++;} (a=10, c=18, b=9)
7 c = a-- +b--; // The same as {c=a+b; a--; b--;} (c=19, a=9, b=8)
8 c = --b+ ++a; // The same as {--b; ++a; c=b+a;} (b=7, a=10, c=17)
9 c = b++ + --a; // The same as {--a; c=b+a; b++;} (a=9, c=16, b=8)

The following are examples on the compound assignment operators:

1 int a=2, b=8, c=6;
2 a += 8; // The same as {a=a+8;} (a=10)
3 a += b; // The same as {a=a+b;} (a=18)
4 a -= c; // The same as {a=a−c;} (a=12)
5 a /= c; // The same as {a=a/c;} (a=2)
6 a *= b; // The same as {a=a*b;} (a=16)
7 a %= c; // The same as {a=a%c;} (a=4)
8 a += b-c; // The same as {a=a+(b−c);} (a=6)
9 a -= b-c; // The same as {a=a−(b−c);} (a=4)

10 a *= b-c; // The same as {a=a*(b−c);} (a=8)

The following table summarizes properties of the previously studied operators (ordered in groups
from highest precedence to lowest precedence):

Operator Description Associativity Type Example
++ -- Postfix increment and decrement left to right Unary a++
+ - Unary plus and minus right to left Unary -a
++ -- Prefix increment and decrement right to left Unary ++a
(type) C-style cast right to left Unary (double)a

* / % Multiplication, division, and remainder left to right Binary a*b
+ - Addition and subtraction left to right Binary a+b
= Assignment right to left Binary a=b

*= /= %= Compound assignment right to left Binary a*=b
+= -= Compound assignment right to left Binary a+=b

Note that precedence and associativity are compile-time concepts. They are independent from
order of evaluation, which is a run-time concept.

4


