
Cairo University
Faculty of Computers and Artificial Intelligence

Computer Science Department

Concepts of Programming
Languages Declarative Programming Dr. Amin Allam

[For more details, refer to “Concepts of Programming Languages” by Robert Sebesta]

Declarative (logic) programming uses a form of symbolic logic as a programming language. In
this lecture, we introduce Prolog, a widely known declarative programming language. Prolog
programs consist of a collection of statements. Each statement is constructed from terms.
A term is a constant, a variable, or a structure.

A constant is either an atom or an integer. An atom is a symbolic value, which is either:
• A string of letters, digits, and underscores that begins with a lowercase letter, or:
• A string of characters delimited by single quotes.

A variable is any string of letters, digits, and underscores that begins with an uppercase letter. A
variable does not bind to type by declaration. It binds dynamically to a type when it is assigned a
value. Such binding is called instantiation.

A structure consists of an atom (called functor) followed by a parameter list of terms inside ().

There are three types of statements in Prolog: fact statements, rule statements, and goal statements.

A fact statement consists of a structure followed by dot. Fact statements are propositions that are
assumed to be true. Consider the following examples of fact statements:

male(bill).
female(ann).
father(bill, ann).

Such facts have no intrinsic meaning. They mean whatever the programmer wants them to mean.
Here, we assume that male(bill) means that bill is male. Also, father(bill, ann)
means that bill is the father of ann, and so on.

Rule statements are mechanisms to conclude new facts from given facts. For example, the rule:

parent(X, Y) :- mother(X, Y). // If RHS of :− is true then LHS is true

means that for any X and Y: If X is mother of Y, then X is parent of Y. Also, the rule:

grandmother(X, Z) :- mother(X, Y), parent(Y, Z). // Comma = AND

means for any X, Y, Z: If X is mother of Y, and Y is parent of Z, then X is grandmother of Z.

The right hand side (RHS) of a rule statement (the part after :-) is the antecedent (the if part).
The left hand side (LHS) is the consequent (the then part). If the antecedent of a rule statement is
true, then its consequent must be true.
The consequent is a single term, while the antecedent can be either a single term or a conjunction.
Conjunctions contain multiple terms separated by logical AND operations implied by commas.

1



FCAI-CU Concepts Declarative Programming Amin Allam

Consider the following fact statements:

male(jake). male(bill).
female(ann). female(mary).
father(bill, jake). father(bill, ann).
mother(mary, jake). mother(mary, ann).

Also, consider the following rule statements:

parent(X, Y) :- mother(X, Y).
parent(X, Y) :- father(X, Y).
grandparent(X, Z) :- parent(X, Y), parent(Y, Z).

Fact and rule statements are the basis for the theorem proving model.
A goal statement (or query) is a proposition that we want the system to either prove or disprove. Its
syntax is similar to a fact statement: a structure followed by dot. But it is not part of the database,
it is just a query that needs to be checked against the existing database of facts and rules.

Consider the following goal (query):

male(bill).

The system will try to prove the goal given the database of facts and rules. It will find a match and
then will output yes, which means that the goal is true.

Consider the following goal:

male(john).

The system will try to prove the goal given the database of facts and rules. It will not find a match
and then will output no, which means that the goal cannot be proved given the existing database.
It does not necessarily mean that the goal is false.

Consider the following goal:

male(X).

Since X is a variable (because its initial letter is uppercase), it matches fact: male(jake). A
variable can match any term. Thus, the system outputs X=jake, which implies yes. Also, it
matches fact: male(bill) and the system also outputs X=bill. An uninstantiated variable
can match with any constant or structure. Similarly, for the goal:

father(bill, X).

The system outputs X=jake and X=ann. Similarly, for the goal:

mother(X, jake).

The system outputs X=mary. Similarly, for the goal:

father(X, Y).

The system outputs X=bill, Y=jake and X=bill, Y=ann.

2



FCAI-CU Concepts Declarative Programming Amin Allam

Consider the following conjunctive goal:

father(X, Y), female(Y).

This goal is composed of two subgoals that both need to be matched simultaneously. The system
first attempts to match with the fact: father(bill,jake) so it sets X=bill, Y=jake. Now, all
subsequent subgoals must be matched without changing the values of X and Y. So, the system
attempts to match female(jake) which is not possible. Thus, the system concludes that it did
not reach the goal with such X and Y instantiations.
Hence, the system backtracks and uninstantiates X and Y, then it attempts to match the first sub-
goal with another fact which is: father(bill,ann) so it sets X=bill, Y=ann. Now, the sys-
tem attempts to match female(ann) which is possible, and then it outputs X=bill, Y=ann.
Note that the system would have backtracked also even if the first instantiation was successfully
matched, in order to get all possible solutions. The system will backtrack now also trying to find
other solutions but it could not.

An important note about the inferencing process of Prolog is that the value of a variable can change
only after the system backtracks and uninstantiates all variables that have been instantiated after it.
Otherwise, the value of a variable cannot change. This is the main difference between procedural
and declarative programming, where a variable in procedural programming simulates a memory
cell, while a variable in declarative programming simulates a mathematical variable.

The above queries involve facts only. Now we consider more complex queries which involve rules
as well. Consider the following goal:

parent(Y, ann).

The system matches parent(Y,ann) with LHS of rule parent(X,Y):-mother(X,Y).
Note that there are two different variables with the same name Y which occur in different contexts.
Y(goal) matches X and ann matches Y(rule). “Y(goal) matches X” means that if one of X or Y
instantiates to a value, the other variable will instantiate to the same value. “ann matches Y(rule)”
means that Y(rule) instantiates to the value ann.
Now, the system attempts to match the RHS of the rule, which is mother(Y(goal),ann),
because if the RHS of the rule is proved, the LHS of this rule is implied and proved as well. It
matches mother(mary,ann) and the system outputs Y=mary.
Then, the system backtracks trying to find other solutions. It uninstantiates Y(goal) and matches
parent(Y,ann) with LHS of rule parent(X,Y):-father(X,Y). Y(goal) matches X and
ann matches Y(rule). The system attempts to match father(Y(goal),ann). It succeeds to
match it with father(bill,ann) and the system outputs Y=bill.

Consider the following conjunctive goal:

parent(Y, ann), male(Y).

The system attempts to match the first subgoal parent(Y,ann) and gets a solution Y=mary,
then it attempts to match the second subgoal male(mary) but it does not succeed.
Then, the system backtracks and gets another solution to parent(Y,ann) which is Y=bill,
then attempts to match the second subgoal male(bill) and it succeeds, so it outputs Y=bill.

3



FCAI-CU Concepts Declarative Programming Amin Allam

Consider the following goal:

grandparent(bill, mary).

The system matches grandparent(bill,mary)with LHS of rule grandparent(X,Z):-
parent(X,Y),parent(Y,Z). So, bill matches X, and mary matches Z.
Now, the system attempts to match both parent(bill,Y), parent(Y,mary) because all
subgoals of the RHS of a rule are required to be proved in order to prove the LHS of this rule.
The first subgoal parent(bill,Y) returns the solution Y=jake, then the system attempts to
match the second subgoal parent(jake,mary) but it does not succeed.
The system backtracks and finds another solution to the first subgoal parent(bill,Y) which
is Y=ann, then the system attempts to match parent(ann,mary) but it does not succeed.
Then, the system backtracks trying to match grandparent(bill,mary) with the LHS of
another rule but it does not find another rule. Hence the system decides that it cannot prove the
main goal and outputs no.

The above inferencing process is called top-down resolution (or backward chaining) because it
starts from the goal (or subgoals) and and attempts to find a sequence of matching propositions
that lead to some set of original facts in the database. This approach works well when there is a
reasonably small set of candidate answers.

An alternative method for the inferencing process is bottom-up resolution (or forward chaining)
which begins with the facts and rules of the database and attempts to find a sequence of matches
that lead to the goal. This method is not used in Prolog, but it is usually better when the number
of possibly correct answers is large.

4


