
Cairo University
Faculty of Computers and Artificial Intelligence

Computer Science Department

Concepts of Programming
Languages Concurrency Dr. Amin Allam

[For more details, refer to “Concepts of Programming Languages” by Robert Sebesta]

- Concurrency is the simultaneous execution of two or more: instructions, statements, subpro-
grams, or programs. In particular, subprograms concurrency affects the design of the programming
languages which support them. There are two concurrency categories:
• Physical concurrency: Several subprograms literally execute simultaneously on different physical
processors.
• Logical concurrency: The programmer and the application software assume that there are multi-
ple processors, but the actual execution of subprograms may take place in interleaved fashion on a
single processor.

Multiprocessor architectures fall into the following categories:
• Single-Instruction Multiple-Data (SIMD): Multiple processors execute the same instruction si-
multaneously, each on different data. One processor controls the operation of the other processors.
• Multiple-Instruction Multiple-Data (MIMD): Multiple processors operate independently but their
operations can be synchronized. Each processor executes its own instruction stream.
- Memory can be shared among processors or distributed such that each processor has its own
local memory. Some systems contain both memory configurations.

- A task (process) is a program unit that can be in concurrent execution with other program units.
Synchronization is a mechanism that controls the order in which tasks execute. There are two
synchronization types:
• Cooperation synchronization: is required when a task A must wait for another task B to complete
some activity before task A can continue its execution.
• Competition synchronization: is required when two tasks require the use of the same resource
that cannot be simultaneously used.

- Alternative answers to concurrency issues are: semaphores, monitors, and message passing:
• A semaphore is an implementation of a guard which is a linguistic wrapper around a guarded
code to be executed only when a specific condition is true. The guarded code usually accesses a
resource (such as a data structure) whose access needs to be controlled. A semaphore consists of
an integer which stores the number of current tasks accessing the resource, and a queue that stores
descriptors of tasks which need to access the resource but did not gain access yet.
• A monitor is logically similar to a semaphore, except that synchronization responsibilities is
transferred to an abstract data type which represents the guarded resource.
• In message passing, a task can suspend its execution at some point, then announces that it is
ready to receive messages, then waits for a message from another task to continue its execution.

1


