
Cairo University
Faculty of Computers and Artificial Intelligence

Computer Science Department

Concepts of Programming
Languages Generic Programming Dr. Amin Allam

In this lecture, we discuss various methods for generic programming in compiled languages. We
discuss their reasoning, benefits, and limitations.

1 Variable parameters

Allowing a subprogram to take variable numbers and types of its parameters in different calls
enhances the generality of this subprogram, with the drawback of absence of type checking.

Consider the following C++ function which takes two integers, ni and nd, that should be followed
by ni integers and nd doubles, and returns the average of all these values:

#include <cstdarg>
using namespace std;

double Avg(int ni, int nd, ...)
{

int i; double d=0;
va_list v; // Used to iterate over the variable parameters
va_start(v, nd); // Start the variable parameters after nd
for(i=0; i<ni; i++) d+=va_arg(v, int); // Get ni integers
for(i=0; i<nd; i++) d+=va_arg(v, double); // Get nd doubles
va_end(v); // Finalize traversal
return d/(ni+nd);

}
int main()
{

cout << Avg(2,3, 1,1, 1.0,1.0,1.0) << endl; // 1 (Correct)
cout << Avg(3,1, 1,2,3, 4.0) << endl; // 2.5 (Correct)
cout << Avg(1,1, 1, 1.0) << endl; // 1 (Correct)
cout << Avg(1,1, 1, 1); // 0.5 (Incorrect parameter types and result)
return 0; // The above error because last integer is interpreted as double!

}

The C printf() function outputs parameters whose types are specified in the first input string.
For example, printf("%d %lf", 1, 2.0); prints an integer followed by a double. Com-
pilers actually check the printf() parameters statically against the input string to avoid the
catastrophic type errors such as the error in the above Avg() function.

1

FCAI-CU Concepts Generic Programming Amin Allam

2 Subprograms as parameters

Consider a high level function Copy() depending on two low level functions as follows:

void Copy()
{ while(true)

{char c=ReadCharFromKeyboard(); WriteCharToPrinter(c);}
}

Suppose we need to do the same behaviour, but to copy from a file to screen, instead of copying
from keyboard to printer. We must define another function that has very similar behaviour of
Copy() but depends on different low level functions:

void Copy2()
{ while(true)

{char c=ReadCharFromFile(); WriteCharToScreen(c);}
}

This causes duplicating the code of the original Copy() and replacing the inside function calls
with new function calls. We can avoid this code duplication to improve writability by making the
Copy() function depend upon two function abstractions (implemented as pointers to functions)
instead of two specific low level functions as follows:

char ReadCharFromKeyboard() {/*Read char from keyboard*/}
char ReadCharFromFile() {/*Read char from file*/}
void WriteCharToPrinter(char c) {/*Write char to printer*/}
void WriteCharToScreen(char c) {/*Write char to screen*/}

void Copy(char (*ReadChar)(), void (*WriteChar)(char))
{

while(true) {char c=ReadChar(); WriteChar(c);}
}
void TestCopy()
{

Copy(ReadCharFromKeyboard, WriteCharToPrinter);
Copy(ReadCharFromFile, WriteCharToScreen);

}

The calls to ReadChar() and WriteChar() dynamically bind to functions according to the
values of the function pointers which are known only at run time. Thus, the above technique is
compatible with the SOLID dependency inversion principle:
“High level modules should not depend upon low level modules. Both should depend upon ab-
stractions.” ⇒ “Program to an interface, not an implementation.”

The Copy() function definition needs to change only if the behaviour (or logic) of copying
changes. It does not need to change if the reader (source) or writer (destination) changes. Thus,
the above technique is also compatible with the SOLID single responsibility principle:
“A module should have only one reason to change.”

2

FCAI-CU Concepts Generic Programming Amin Allam

3 Type-less parameters

Consider the following program which sorts an array using the standard C qsort() function:

#include <stdlib.h> // includes qsort()

int CompareInt(const void* pa, const void* pb)
{

int a=*(int*)(pa), b=*(int*)(pb);
return a-b; // returns 0 if a==b, +ve if a>b, −ve if a<b

}
int CompareDouble(const void* pa, const void* pb)
{

double a=*(double*)(pa), b=*(double*)(pb);
double d=a-b;
// consider them equal if the difference is very small
if(d>-0.00001 && d<0.00001) return 0;
if(d>0) return 1;
return -1; // d<0

}

int main()
{

int a[]={3,5,2,1,7,4,6};
int n=sizeof(a)/sizeof(a[0]);
qsort(a, n, sizeof(int), CompareInt);
for(int i=0;i<n;i++) cout<<a[i]<<" "; cout<<endl;

double b[]={3.1, 5.3, 2.2, 1.1, 7.4, 4.8, 6.9};
int m=sizeof(b)/sizeof(b[0]);
qsort(b, m, sizeof(double), CompareDouble);
for(int i=0;i<m;i++) cout<<b[i]<<" "; cout<<endl;
return 0;

}

The idea is to use the void* data type which accepts any pointer type, with the drawback of
absence of type checking. The first argument is a void* which accepts the array to be sorted. The
second argument is the number of elements of the array. The third argument is the size of each
element (because the function does not have any information about the type of elements). The
fourth argument is a pointer to a function which compares two elements and returns 0 if they are
equal, a positive value if the first is larger, and a negative value if the second is larger.

The address of each element is passed as void* to match the function declaration and then a type
cast is performed from within the function according to the specific data type. The following is
an implementation of a SelectionSort() function with the same declaration of the standard
qsort() function:

3

FCAI-CU Concepts Generic Programming Amin Allam

#include <stdlib.h> // includes malloc()
#include <string.h> // includes memcpy()

void SelectionSort(void* buf, int n, int elem_size,
int (*Compare)(const void*, const void*))

{
int i,j;
// allocate memory for the temporary variable
void* ptemp=malloc(elem_size);
for(i=0;i<n;i++)
{

// Keep the minimum of a[i ... j] in a[i]
for(j=i+1;j<n;j++)
{

void* pa=(char*)buf+(i*elem_size); // pa=&a[i]
void* pb=(char*)buf+(j*elem_size); // pb=&a[j]

if(Compare(pb, pa)<0) // if(a[j]<a[i])
{

memcpy(ptemp, pa, elem_size); // temp=a[i];
memcpy(pa, pb, elem_size); // a[i]=a[j];
memcpy(pb, ptemp, elem_size); // a[j]=temp;

}
}
// Here: a[i] is the minimum of a[i ... n]
// Hence: a [0... i] are sorted

}
// de− allocate memory of the temporary variable
free(ptemp);

}

int main()
{

int a[]={3,5,2,1,7,4,6};
int n=sizeof(a)/sizeof(a[0]);
SelectionSort(a, n, sizeof(int), CompareInt);
for(int i=0;i<n;i++) cout<<a[i]<<" "; cout<<endl;

double b[]={3.1, 5.3, 2.2, 1.1, 7.4, 4.8, 6.9};
int m=sizeof(b)/sizeof(b[0]);
SelectionSort(b, m, sizeof(double), CompareDouble);
for(int i=0;i<m;i++) cout<<b[i]<<" "; cout<<endl;
return 0;

}

4

FCAI-CU Concepts Generic Programming Amin Allam

4 Polymorphism

Static polymorphism is binding subprogram calls to subprograms based on their statically checked
parameter types. It happens for overloaded subprograms which have the same name but distinct
parameter profiles. For each subprogram call, the compiler statically checks the types of actual
parameters against the types of formal parameters of existing subprograms with the same name
as the call, and binds the call to the subprogram whose parameter profile matches. If no such
subprogram exist, the compiler attempts to bind the subprogram which can be matched with the
least number of coersions of actual parameters.

We discussed the simplest form of dynamic binding of subprogram calls previously in the subpro-
grams as parameters section. Dynamic polymorphism is binding subprogram calls to subprograms
based on their dynamically checked parameter types. A particular kind of dynamic polymorphism
is binding a member function call based on the invoking object type checked at run time. In our
lectures, we call this particular kind just polymorphism for simplicity.

Since variable parameters and type-less parameters discussed previously do not include type
checking, they are considered unsafe and are usually avoided. Similar techniques exist in other
languages provided with dynamic type checking which are considered safer, such as the Object
type in Java. Polymorphism in compiled languages provides a very safe and efficient way to simu-
late dynamic type binding where all types are statically checked, but subprogram calls bind to their
subprograms based on the invoking object type which looks as if it is checked at run time.

The following example is a powerful usage of polymorphism to achieve generality. Suppose we
need to create a game where the user (player) can select a hero at the beginning to play with. The
game behaviour is basically the same for all heroes, except for some minor details related to each
hero type. When a virtual function is called through a Hero*, the function associated with the
derived object whose address is hold by the Hero* will be executed:

class Hero // Interface
{
public:

Hero() {} // The constructor cannot be virtual
virtual void Fire()=0;
virtual void Jump()=0;
virtual void Draw()=0;
virtual ˜Hero() {} // The destructor should be virtual

};

class SuperMario : public Hero
{
public:

void Fire() {}
void Jump() {}
void Draw() {} // Draw SuperMario

};

5

FCAI-CU Concepts Generic Programming Amin Allam

class SuperMan : public Hero
{
public:

void Fire() {}
void Jump() {}
void Draw() {} // Draw SuperMan

};

class BatMan : public Hero
{
public:

void Fire() {}
void Jump() {}
void Draw() {} // Draw BatMan

};

class Game
{
protected:

Hero* hero;

public:
Game(Hero* h) {hero=h;}
void Play() {hero->Draw(); hero->Fire(); hero->Jump();}

};

void TestGame()
{

Hero* hero = new SuperMan;
Game game(hero);
game.Play();
delete hero;

};

Since functions of class Game use a Hero pointer, it can use objects of its derived classes,
such as SuperMan, and call its functions, without including any declaration of SuperMan inside
class Game. Thus, it is compatible with the SOLID Liskov substitution principle:
“Modules that use pointers or references to a base class must be able to use objects of derived
classes without knowing them.”

Moreover, it is compatible with the SOLID single responsibility principle because the definition
of class Game needs to change only if the behaviour (or logic) of playing the game changes.
It does not need to change if the hero changes. The game can support a new hero easily by just
deriving it from class Hero and passing a pointer to its object to the Game constructor.

6

FCAI-CU Concepts Generic Programming Amin Allam

The Hero class acts as a placeholder, that is, we never create objects of type Hero. Creating
objects of type Hero is semantically meaningless since it does not represent a particular hero that
can be used in the game. We use a Hero* only to hold the address of an object from a derived
class such as SuperMan, but we never use it to hold the address of an object of type Hero.

To prevent the programmer from creating objects of type Hero by mistake, and to increase read-
ability, we should provide at least one pure virtual function in the class. A pure virtual function
does not have an implementation and has the characters =0 after its declaration. A class containing
a pure virtual function is called abstract class and cannot be instantiated (we can not create objects
of its type). A class which does not contain any pure virtual function is called a concrete class and
can be instantiated.

An abstract class may contain some data members and some minimal function definitions which
are very difficult to change. However, since data and function definitions are usually subject to
change, it is better to avoid them completely by making all functions pure virtual. An interface is
an abstract class which does not contain any data members, and all its functions are pure virtual
except for the constructors which are not virtual and the destructor which is virtual but not pure.

Thus, the above example is compatible with the SOLID dependency inversion principle because
the high level class Game depends on abstraction of a hero (the Hero interface), instead of the
concrete heroes themselves (such as class SuperMan).

In Java, all functions are virtual by default, so the reserved word virtual is not needed. In
C#, the reserved word virtual is needed and also the reserved word override is needed in
the declaration of the overriding functions of the derived classes which implement the virtual
functions of the base class.

Abstraction mainly improves writability and generality. Abstraction is a very general concept.
Any defined function F() can be considered as an abstraction in the sense that the programmer
can rewrite its implementation and recompile the new definition without affecting its calls in the
remainder of the program. Also, a defined function F() can be considered as an abstraction in the
sense that it can be called several times with different combinations of parameter values.

Any built-in data type such as int is considered as an abstraction in the sense that different imple-
mentations of the same programming language can define it in different ways such that these ways
are compatible with the semantic meaning of integer. Its size and implementations of arithmetic
operators may change according to the operating system and the machine configuration as well.
A user-define data type such as Student is considered as an abstraction in the sense that the
programmer can rewrite its implementation and recompile the new definition without affecting its
usage in the remainder of the program. All the above are examples of static abstraction.

In this lecture, we are particularly interested in dynamic abstraction and we call it just abstraction
for simplicity. In dynamic abstraction, an abstract programming construct can refer to different
concrete constructs at run time, such as the dynamic polymorphism described above.

7

FCAI-CU Concepts Generic Programming Amin Allam

5 Simulating polymorphism

The following implementation by Adam Rosenfield simulates polymorphism. A derived class
object aggregates a base class object for the purpose of inheritance. A base class object contains a
virtual table containing a derived class functions addresses which are assigned during creation of
a derived class object.

#include <iostream>
using namespace std;

struct HeroVtable;

struct Hero
{

HeroVtable* vtable;
};

struct HeroVtable
{

// The constructor is not virtual so it does not exist here
void (*Jump)(Hero*);
void (*Fire)(Hero*, int);
void (*Display)(Hero*);
void (*Destroy)(Hero*); // The destructor is virtual

};

void HeroJump(Hero* hero)
{

hero->vtable->Jump(hero);
}

void HeroFire(Hero* hero, int armor)
{

hero->vtable->Fire(hero, armor);
}

void HeroDisplay(Hero* hero)
{

hero->vtable->Display(hero);
}

void HeroDestroy(Hero* hero)
{

hero->vtable->Destroy(hero);
}

8

FCAI-CU Concepts Generic Programming Amin Allam

struct Superman
{

Hero parent;
int num_jumps;
int fired_armor;

};

void SupermanJump(Superman* superman)
{

superman->num_jumps++;
}

void SupermanFire(Superman* superman, int armor)
{

superman->fired_armor+=armor;
}

void SupermanDisplay(Superman* superman)
{

cout<<"Superman jumped "<<superman->num_jumps
<<" times and fired "<<superman->fired_armor
<<" shots!"<<endl;

}

void SupermanDestroy(Superman* superman)
{

// Free resources here
}

HeroVtable superman_vtable=
{

(void(*)(Hero*)) SupermanJump,
(void(*)(Hero*,int)) SupermanFire,
(void(*)(Hero*)) SupermanDisplay,
(void(*)(Hero*)) SupermanDestroy

};

void SupermanInitialize(Superman* superman)
{

superman->parent.vtable=&superman_vtable;
superman->num_jumps=0;
superman->fired_armor=0;

}

9

FCAI-CU Concepts Generic Programming Amin Allam

struct Batman
{

Hero parent;
int num_actions;

};

void BatmanJump(Batman* batman)
{

batman->num_actions++;
}

void BatmanFire(Batman* batman, int armor)
{

batman->num_actions++;
}

void BatmanDisplay(Batman* batman)
{

cout<<"Batman performed "<<batman->num_actions
<<" actions!"<<endl;

}

void BatmanDestroy(Batman* batman)
{

// Free resources here
}

HeroVtable batman_vtable=
{

(void(*)(Hero*)) BatmanJump,
(void(*)(Hero*,int)) BatmanFire,
(void(*)(Hero*)) BatmanDisplay,
(void(*)(Hero*)) BatmanDestroy

};

void BatmanInitialize(Batman* batman)
{

batman->parent.vtable=&batman_vtable;
batman->num_actions=0;

}

The above function pointers casts are valid since all parameters are of compatible types. It is also
possible to avoid such casts by matching the function protocols of the derived and base classes and
performing a type cast of the first parameter at the beginning of each derived function.

10

FCAI-CU Concepts Generic Programming Amin Allam

int main()
{

Superman superman;
SupermanInitialize(&superman);

Batman batman;
BatmanInitialize(&batman);

Hero* heroes[2];
heroes[0]=(Hero*)&superman; // heroes[0]=&superman.parent;
heroes[1]=(Hero*)&batman; // heroes[1]=&batman.parent;

int i;
for(i=0;i<2;i++)
{

HeroFire(heroes[i], 3);
HeroJump(heroes[i]);
HeroJump(heroes[i]);
HeroFire(heroes[i], 4);

}

for(i=0;i<2;i++)
{

HeroDisplay(heroes[i]);
HeroDestroy(heroes[i]);

}

return 0;
}

The above (Hero*) type cast is possible because Superman and Batman objects aggregate a
Hero object as their first field. This type cast (type conversion) is called an up cast because it
converts a derived object to a base object. Converting a base object to a derived object is called a
down cast.

The above program outputs the following:

Superman jumped 2 times and fired 7 shots!
Batman performed 4 actions!

11

FCAI-CU Concepts Generic Programming Amin Allam

6 Templates

Templates are a powerful C++ mechanism that attempts to achieve generality by code genera-
tion. Code is generated by text substitution then compiled. The following program attempts to
implement the game we discussed previously using templates instead of polymorphism. The fol-
lowing program uses templates to ask the compiler to generate separate Game classes, each class
aggregates an object from a concrete Hero class:

class SuperMario {public: void Fire(){} void Jump(){}};
class SuperMan {public: void Fire(){} void Jump(){}};
class BatMan {public: void Fire(){} void Jump(){}};

template<class ConcreteHero>
class Game
{
private: ConcreteHero hero;
public: void Play() {hero.Fire(); hero.Jump();}
};

void TestGame()
{

Game<SuperMan> g1; g1.Play();
Game<BatMan> g2; g2.Play();

}

The programmer avoids code duplication to increase writability, and asks the compiler to duplicate
code on-the-fly before compiling. The compiler generates the following code and then compiles it.
Note that the compiler did not generate class GameSuperMario because it is not referenced:

class GameSuperMan
{
private: SuperMan hero;
public: void Play() {hero.Fire(); hero.Jump();}
};

class GameBatMan
{
private: BatMan hero;
public: void Play() {hero.Fire(); hero.Jump();}
};

void TestGame()
{

GameSuperMan g1; g1.Play();
GameBatMan g2; g2.Play();

};

12

FCAI-CU Concepts Generic Programming Amin Allam

As another example on templates, consider the following program which sorts an array:

template<class T>
void SelectionSort(T* a, int n)
{

int i,j;
for(i=0;i<n;i++)
{

// Keep the minimum of a[i ... j] in a[i]
for(j=i+1;j<n;j++)
{

if(a[j]<a[i]) // Less than operator of T
{

T temp=a[i]; // Copy constructor of T
a[i]=a[j]; // Assignment operator of T
a[j]=temp; // Assignment operator of T

}
}
// Here: a[i] is the minimum of a[i ... n]
// Hence: a [0... i] are sorted

}
}
int main()
{

int a[]={3,5,2,1,7,4,6}; int n=sizeof(a)/sizeof(a[0]);
SelectionSort(a,n);
for(int i=0;i<n;i++) cout<<a[i]<<" "; cout<<endl;
return 0;

}

The SelectionSort() function is a template function which can sort an array whose elements
are of type T such that type T contains the definition of copy constructor, copy assignment operator,
and less than operator.

Consider the following program which utilizes the C++ standard template library:

#include <vector>
#include <algorithm> // includes sort()
using namespace std;

int main()
{

vector<int> v; // creates a dynamic array object v
v.push_back(4); // adds the integer 4 to the end of v
v.push_back(7); // adds the integer 7 to the end of v
v.push_back(2);

13

FCAI-CU Concepts Generic Programming Amin Allam

// creates an iterator object iter which can traverse the elements of v
// v.begin () is an iterator to the first element
// v.end() is an iterator to the element after last
// iterator allows similar processing of different containers (vector , set , ...)
vector<int>::iterator iter; // this loop works with any container:
for(iter=v.begin(); iter!=v.end(); iter++) cout<<*iter;
cout<<endl; // prints: 4 7 2

sort(v.begin(), v.end()); // sorts elements of v (works with any container)
for(iter=v.begin(); iter!=v.end(); iter++) cout<<*iter;
cout<<endl; // prints: 2 4 7
return 0;

}

Suppose we wish to implement similar behaviour in C++ without using the standard libraries, we
can proceed as the following:

template <class T>
class Vector
{
private:

int n;
T a[100];

public:
Vector() {n=0;}
void push_back(const T& x) {a[n]=x; n++;}

typedef T* Iterator;

Iterator begin() {return &a[0];}
Iterator end() {return &a[n];}

};

template <class T, class Iterator>
void Sort(Iterator a, Iterator b)
{

for(Iterator i=a; i!=b; i++)
{

for(Iterator j=i+1; j!=b; j++)
{

if(*j<*i) {T temp=*i; *i=*j; *j=temp;}
}

}
}

14

FCAI-CU Concepts Generic Programming Amin Allam

int main()
{

Vector<int> v;
v.push_back(4); v.push_back(7); v.push_back(2);
Vector<int>::Iterator iter;
for(iter=v.begin(); iter!=v.end(); iter++) cout<<*iter;
cout<<endl;
Sort<int, Vector<int>::Iterator>(v.begin(), v.end());
for(iter=v.begin(); iter!=v.end(); iter++) cout<<*iter;
cout<<endl;
return 0;

}

The only drawback of the previous program is that inside Sort(), we are not able to deduce the
type T from the type Iterator. So, we needed to pass the type T to Sort() as shown in the
above code. This issue is handled in the following version:

template <class T>
class IteratorBasedOnPointers
{
private:

T* i;
public:

typedef T value_type;
IteratorBasedOnPointers<T> () {}
IteratorBasedOnPointers<T> (T* const j) {i=j;}
void operator++(){i++;}
void operator++(int){i++;}
operator T*() {return i;}

};

template <class T>
class Vector
{
private:

int n;
T a[100];

public:
Vector() {n=0;}
void push_back(const T& x) {a[n]=x; n++;}
typedef IteratorBasedOnPointers<T> Iterator;
Iterator begin() {return &a[0];}
Iterator end() {return &a[n];}

};

15

FCAI-CU Concepts Generic Programming Amin Allam

template <class Iterator>
void Sort(Iterator a, Iterator b)
{

for(Iterator i=a; i!=b; i++)
{

for(Iterator j=i+1; j!=b; j++)
{

if(*j<*i)
{

typename Iterator::value_type temp=*i;

*i=*j; *j=temp;
}

}
}

}

The keyword typename tells the compiler that Iterator::value type is a type, not a
variable. The compiler cannot conclude this fact when it compiles Sort() because the type
of Iterator is not determined in one of the compilations. The compiler compiles a template
function or class independently of any type, and also it compiles it once for each type substitution.

Suppose we wish to pass the comparison function as argument to the Sort() function instead of
relying on the definition of the less than operator, we can overload the Sort() template function
as follows:

template <class Iterator, class LessThan>
void Sort(Iterator a, Iterator b, LessThan IsLess)
{

for(Iterator i=a; i!=b; i++)
{

for(Iterator j=i+1; j!=b; j++)
{

if(IsLess(*j, *i))
{

typename Iterator::value_type temp=*i;

*i=*j;

*j=temp;
}

}
}

}

The previous definition of Sort() accepts a function which takes two variables of type T and
returns true only if the first one is less than the second one. Additionally, it can accept a function
object (also called functor) which is an object from a class which overloads the parentheses ()
operator to behave similarly to a function:

16

FCAI-CU Concepts Generic Programming Amin Allam

bool LessThan1(int a, int b)
{

return a<b;
}

class LessThan2
{
public:

bool operator()(int a, int b)
{

return a<b;
}

};

int main()
{

// ...
// Any one of the following lines works
Sort(v.begin(), v.end()); // Use the less than operator
Sort(v.begin(), v.end(), LessThan1); // Use a global function
Sort(v.begin(), v.end(), LessThan2()); // Use a functor (class object)
// ...

}

Templates are more efficient than polymorphism, because templates do not have the run time over-
heads of implicitly checking the object type and redirecting execution to the intended function.

But, templates are not useful when we need to parametrize a template with the derived type of a
base class pointer. Also, templates are not useful when defining an array of base class pointers
that hold the addresses of different derived classes. In such cases, polymorphism is essential.

Templates are not intended to replace polymorphism. Templates are more flexible than polymor-
phism in some situations, and polymorphism is more flexible than templates in other situations.
They should be considered as various design tools. Excessive usage of templates incorporates
compile time overheads. Excessive usage of polymorphism incorporates run time overheads. The
designer should make use of suitable combinations of them for a better design.

17

FCAI-CU Concepts Generic Programming Amin Allam

7 Simulating templates

The basic features of templates can be simulated in C and C++ using preprocessor directives. The
following is an implementation by Andreas Arnold. Suppose we wish to generate the following
functions which differ only in one templated type:

// Computes a:=a+b where a and b are two arrays of length n
void sum_float(float* a, float* b, int n)
{int i; for(i=0;i<n;i++) a[i]+=b[i];}

void sum_int(int* a, int* b, int n)
{int i; for(i=0;i<n;i++) a[i]+=b[i];}

void sum_int64(int64* a, int64* b, int n)
{int i; for(i=0;i<n;i++) a[i]+=b[i];}

The first step is to write a macro TEMPLATE(X,Y) which concatenates two strings with an un-
derscore in between (to produce function names like above). This macro is implemented in two
stages to enable expanding X and Y first (if they are macros) before concatenating them.

// templates .h
#ifndef TEMPLATES_H_
#define TEMPLATES_H_
typedef long long int64; // We wish to avoid types with multiple words
#define CAT(X,Y) X##_##Y
#define TEMPLATE(X,Y) CAT(X,Y)
#endif

This file contains the declaration of one function assuming that T is defined to be a specific type:

// sum as template .h
#ifdef T
#include "templates.h"
void TEMPLATE(sum,T)(T*, T*, int);
#endif

This file contains the definition of one function assuming that T is defined to be a specific type:

// sum as template cpp .h
#ifdef T
#include "templates.h"
// Computes a:=a+b where a and b are two arrays of length n
void TEMPLATE(sum,T)(T* a, T* b, int n)
{

int i; for(i=0;i<n;i++) a[i]+=b[i];
}
#endif

18

FCAI-CU Concepts Generic Programming Amin Allam

This file contains the declarations of all needed functions:

// all possible sums .h
#ifndef ALL_POSSIBLE_SUMS_H_
#define ALL_POSSIBLE_SUMS_H_
#include "templates.h"

#ifdef T
#undef T
#endif
#define T float
#include "sum_as_template.h"

#ifdef T
#undef T
#endif
#define T int
#include "sum_as_template.h"

#ifdef T
#undef T
#endif
#define T int64
#include "sum_as_template.h"

#endif

This file contains the definitions of all needed functions:

// all possible sums .cpp
#include "templates.h"
#include "all_possible_sums.h"

#ifdef T
#undef T
#endif
#define T float
#include "sum_as_template_cpp.h"

#ifdef T
#undef T
#endif
#define T int
#include "sum_as_template_cpp.h"

#ifdef T
#undef T
#endif
#define T int64
#include "sum_as_template_cpp.h"

19

FCAI-CU Concepts Generic Programming Amin Allam

Only the file all possible sums.cpp needs to be compiled, and the file all possible sums.h needs to
be included in order to use the above template functions:

// main.cpp

#include <cstdio>
using namespace std;

#include "all_possible_sums.h"

int main(int argc, char** argv)
{

int ai[3] = {1, 2, 3};
int bi[3] = {4, 5, 6};

float af[3] = {1.0, 2.0, 3.0};
float bf[3] = {1.5, 2.5, 3.5};

int64 al[3] = {10, 20, 30};
int64 bl[3] = {40, 50, 60};

TEMPLATE(sum, int)(ai, bi, 3); // sum int(ai, bi, 3);
TEMPLATE(sum, float)(af, bf, 3); // sum float(af, bf, 3);
TEMPLATE(sum, int64)(al, bl, 3); // sum int64(al, bl, 3);

int i;
for(i=0;i<3;i++) printf("%d ", ai[i]); printf("\n");
for(i=0;i<3;i++) printf("%lf ", af[i]); printf("\n");

return 0;
}

20

FCAI-CU Concepts Generic Programming Amin Allam

8 Dynamic inheritance

Inheritance is a powerful mechanism that allows to extend a base class, by creating a derived
class from it that includes all features of the base class, plus possibly more features, which can be
viewed as extending the base class. Also, it allows reusing the base class instead of rewriting its
code in the derived class. Thus, it is compatible with the SOLID open/closed principle:
“Modules should be open for extension but closed for modification.”

A class is usually known to be derived from another class before run time, even in interpreted
languages. Dynamic inheritance is the ability to dynamically set and change the parent of an object
during run time. Dynamic inheritance is a very powerful mechanism which provides enormous
design flexibility, but it is directly supported by only few languages which are not commonly used.
It can be indirectly simulated in JavaScript using the prototype property. Fortunately, there is
an effective way to simulate it in C++ using the decorator design pattern as follows:

Suppose we need objects of ClassB to be dynamically inherited from any class derived from
ClassA. ClassB should be derived from ClassA and also aggregates an object of ClassA*
which will act as its base class. Also, it should redefine all functions of ClassA and forward such
calls to the aggregated ClassA* object.

class ClassA
{
public:

virtual void Fun1()=0;
virtual void Fun2()=0;
virtual void Fun3()=0;
virtual ˜ClassA() {}

};

class ClassB : public ClassA
{
private:

ClassA* parent;

public:
ClassB(ClassA* p) {parent=p;}
void SetParent(ClassA* p) {parent=p;}

void Fun1() {parent->Fun1();}
void Fun2() {parent->Fun2();}
void Fun3() {parent->Fun3();}

};

ClassB is derived from ClassA only to receive the virtual function calls, but actually it acts as
if it is derived from the concrete class of the aggregated ClassA* object by forwarding to it all
ClassA function calls.

21

FCAI-CU Concepts Generic Programming Amin Allam

9 Design and generic programming

Given the declaration of the following interfaces:

class Button
{
public:

virtual void Click()=0;
virtual void DrawNormal()=0;
virtual void DrawClicked()=0;
virtual Rectangle GetRect()=0;
virtual ˜Button() {}

};

class Animation
{
public:

virtual void Animate(Rectangle)=0;
virtual ˜Animation() {}

};

class Button represents clickable buttons used on graphical user interfaces, while class
Animation represents an area on screen where animation is played. Both interfaces are useful
and independently used by other modules.

Suppose that we need to create a button which contains animation. A first attempt is to redefine
class Button by inheriting it from class Animation as follows:

class Button : public Animation
{
public:

virtual void Click()=0;
virtual void DrawNormal()=0;
virtual void DrawClicked()=0;
virtual Rectangle GetRect()=0;
virtual ˜Button() {}

};

The above approach has a significant drawback. class Button now depends upon class
Animation regardless of whether the button actually has animation. All modules that need non-
animated buttons are forced to depend upon animated buttons.

This reduces the readability of the programs, introduces additional complexity by incorporating
unused interfaces in applications which do not need them, and gives more chances to misuse
class Button if some user calls Animate() on a non-animated button.
This violates the SOLID interface segregation principle:
“A module should not depend upon an interface which does not use.”

22

FCAI-CU Concepts Generic Programming Amin Allam

A similar issue happens if we attempt to inherit class Animation from class Button.
All modules that need animation without button are forced to depend on a useless button interface.

Another solution is not to change the original Button or Animation interfaces, and to define a
new class as follows:

class AnimatedButton : public Button, public Animation
{
public:

void Animate(Rectangle){} // define animation behaviour here
void Animate() {Animate(Button::GetRect());}

};

This approach has the problem of introducing an inheritance dependency between Animation
and AnimatedButton which should not exist. If there are concrete classes SkyAmination
and WaterAnimation derived from Animation. There is no way to use these concrete classes
in class AnimatedButton

A better solution is to use aggregation as the following:

class AnimatedButton : public Button
{
protected:

Animation* anim;
public:

AnimatedButton(Animation* a) {anim=a;}
void Animate() {anim->Animate(Button::GetRect());}

};

We can pass any concrete class derived from Animation to the constructor of AnimatedButton.

Note that class AnimatedButton is still an abstract class since it inherits non-implemented
pure virtual functions from class Button. This solution has the advantage of being close to
the is-a and has-a rule: An animated button is a button, so it is derived from class Button.
An animated button has an animation, so it aggregates an Animation object and delegates the
animation task to it.

Although class AnimatedButton is an abstract class (not interface) because it contains a
member variable and an implemented method, it has the same properties of interfaces because
it does not contain a state (the member variable is actually a stateless interface) and the only
implemented function delegates its task to an interface.

Aggregation is usually preferred to inheritance, since it gives more flexibility to change the type of
aggregated objects (as we did in Game and Hero), keeps each class encapsulated and focused on
one task, and keeps class hierarchies simple. This leads to the following principle:
“Prefer object aggregation over class inheritance.”

Should AnimatedButton aggregate Button as well? This has the advantage of using any
concrete class derived from class Button, such as WoodButton and MetalButton:

23

FCAI-CU Concepts Generic Programming Amin Allam

class AnimatedButton
{
protected:

Button* but;
Animation* anim;

public:
AnimatedButton(Button* b, Animation* a) {but=b; anim=a;}
void Click() {but->Click();}
void DrawNormal() {but->DrawNormal();}
void DrawClicked() {but->DrawClicked();}
Rectangle GetRect() {return but->GetRect();};
void Animate() {anim->Animate(GetRect());}

};

However, since class AnimatedButton is no more inherited from class Button, it can-
not be used in place of Button pointers or references in modules which already use them, which
violates the SOLID Liskov substitution principle: “Modules that use pointers or references to a
base class must be able to use objects of derived classes without knowing them.”

Templates overcome these drawbacks as follows:

template<class CButton>
class AnimatedButton : public CButton
{
protected:

Animation* anim;
public:

AnimatedButton(Animation* a) {anim=a;}
void Animate() {anim->Animate(CButton::GetRect());}

};

This solution enables to use derived classes from Button by specifying one of them as the tem-
plate parameter, and to use derived classes from Animation by passing an object from one of
them in the constructor, such as:

AnimatedButton<WoodButton> obj(new SkyAnimation);

Actually, the template parameter does not need to be derived from Button, it just needs to define
the functions used inside the template. Moreover, objects of class AnimatedButton can be
used in place of Button since they are derived from it.

Now, suppose that all we have is a Button* and we need to create an AnimatedButton object
using SkyAnimation and the concrete type whose address is stored at the given Button*.
Templates cannot help since they require specifying the concrete class name inside the template
parameter as in the above statement. Dynamic inheritance using the decorator design pattern
offers the solution. Note that it is equivalent to the solution which aggregates both objects, except
that class AnimatedButton is additionally derived from class Button.

24

FCAI-CU Concepts Generic Programming Amin Allam

class AnimatedButton : public Button
{
protected:

Button* but;
Animation* anim;

public:
AnimatedButton(Button* b, Animation* a) {but=b; anim=a;}
void Click() {but->Click();}
void DrawNormal() {but->DrawNormal();}
void DrawClicked() {but->DrawClicked();}
Rectangle GetRect() {return but->GetRect();};
void Animate() {anim->Animate(GetRect());}

};

Button* AnimatedTheButton(Button* button, Animation* animation)
{

AnimatedButton obj(button, animation);
obj->Animate();
return obj;

}

class AnimatedButton is derived from class Button only to receive the virtual func-
tion calls, but actually it acts as if it is derived from the concrete class of the aggregated Button*
but object by forwarding to it all class Button function calls.

25

