z Cairo University
ﬁ Faculty of Computers and Artificial Intelligence

le Computer Science Department

Concepts of Programming

L Subprograms Dr. Amin Allam
anguages

[For more details, refer to “Concepts of Programming Languages” by Robert Sebesta]

1 Subprogram definition

A subprogram definition consists of:

e Subprogram header: specifies the subprogram kind, name, and protocol. The subprogram kind is
either function or procedure. A procedure is a function without return type. The protocol consists
of parameter profile and return type if it is a function in a typed language. The parameter profile
specifies the number, order, and types (for typed languages) of its formal parameters. C++ and
Java use the reserved word vo1id to indicate no return type.

e Subprogram body: specifies a sequence of statement which are executed in order when another
subprogram calls it. A subprogram call is the explicit request to execute its body. The calling
subprogram provides the called subprogram with actual parameters to be bound to its formal pa-
rameters. Sometimes, the term parameters is used for formal parameters while the term arguments
is used for actual parameters. The calling subprogram is suspended during the execution of the
called subprogram. Control is passed to the entry point (usually the first statement) of the called
subprogram. Control returns to the caller when the called subprogram execution terminates.

The correspondence between actual and formal parameters is usually done by position. That is,
the i*" actual parameter is bound to the i'* formal parameter. That method is called positional
parameters. Another method provided by some languages is called keyword parameters which
specifies the name of the formal parameter to be bound with the actual parameter. The advantage
of this method is that parameters can appear in any order so the programmer does not need to
remember the order of formal parameters, such as the following Python subprogram call:

Fun (length=my_length, list=my_array, sum=my_sum)

In several languages, default values can be associated to formal parameters which are used when-
ever the subprogram call does not specify the corresponding actual parameters.

C# allows a method to accept a variable number of parameters of the same type with the params
modifier, where the caller sends either array or list of expressions:

public void DisplayList (params int[] list)
{foreach (int wval in list) Console.WriteLn("Val={0}", wval);}

The above function can be called by passing a 1ist or a variable number of parameters such as:

obj.DisplayList (2, 4, 5, x-1, 17);

FCAI-CU Concepts Subprograms Amin Allam

2 Subprogram declaration

A subprogram declaration provides the subprogram header but does not include its body. It is
required in languages that do not allow forward references to subprograms. C and C++ require all
subprograms to be either defined or declared before they are called and inside the same translation
unit where they are called.

double Fun(int, double); //Declaration (called prototype in C++)

int main ()

{
int a=5; double b=9.4;
Fun (5, b);
return O;

}
double Fun (int x, double y) {return x+y;} //Definition

A project with multiple source (cpp) files in C++ is compiled by the following steps:

e For each source file, independently of other source files, the preprocessor processes the source
file by expanding all macros (instructions starting with #), usually by simple text substitution, to
produce a translation unit. For example, consider the following file:

#include "mylib.h"
#define Max (A, B) ((A)>(B)?(A):(B))
double F (int vy, int z) {return G()+Max(2*xy, z/5);}

Assuming that the file my1ib . h consists of the following:

double G{();

The cpp file will be expanded by the preprocessor to the following translation unit:

double G{();
double F (int vy, int z) {return G()+((2*y)>(z/5)?2(2*y):(z/5));}

e For each translation unit, independently of other translation units, the compiler compiles the
translation unit to produce an object file. The compiler requires that all functions are either defined
or declared before its first call in the same translation unit, in order to perform static type checking
to validate type compatibility between actual and formal parameters.

e The /inker combines all object files into one executable image (also called load module), which
is a machine-readable executable file or library. The addresses of called functions (such as G ())
are not necessarily known during compilation because only their declarations may be available.
Therefore, the linker is responsible for resolving all function calls by calculating the correct ad-
dresses and placing them into the corresponding call statements inside the executable. To be able
to do so, the definition of each function must exist exactly in one translation unit.

The above compilation and linking mechanisms reduce compilation time by avoiding recompila-
tion of source files which are not changed, including source files for built-in C++ libraries. Only
the changed source files of a project need to be recompiled.

2

FCAI-CU Concepts Subprograms Amin Allam

In C++, there is no restriction on the number of function declarations. Each non-inline function
must be defined exactly once across all files. Classes and inline functions must be defined at most
once per translation unit, such that at least one definition exists for each entity across all files, and
all definitions for the same entity are identical.

Inline functions include all functions modified by the reserved word in1ine, and all class member
functions defined inside the class definition. Inline functions differ from other functions because
the compiler tries to replace calls to inline functions by the code of the function body itself, which
may be useful for optimization only if the number of statements in the body is small.

Therefore, it is safe to include function declarations, class definitions and inline function definitions
in header (.h) files and include them in several source (cpp) files.

The declaration of a variable is also its definition except in few cases. Suppose there is a global
variable that needs to be accessed from a source file other than the one including its definition.
In that case, it is just declared (not defined) in the new file using the extern modifier before
accessing it, because each variable must be defined exactly once across all files.

Similarly, static class data members are considered declared but not defined if their declarations
appear inside their class definitions. Hence, they must be defined outside their class definition. This
is because classes can be defined several times in different translation units but variables cannot.

3 Parameter passing

Formal parameters are characterized by one of three distinct semantic models:
° : Formal parameters receive data from the corresponding actual parameters. This
mode can implemented by one of two models:

- Pass-by-value: The value of actual parameter is used to initialize the corresponding formal
parameter by copying.

- Pass-by-readonly-reference: Provides read-only access path to the actual parameter.

void Fun (int a, const inté& b); // C++In mode

o : Formal parameters transmit data to the corresponding actual parameters. This mode
can implemented by a pass-by-result model: No value is transmitted to the formal parameter,
which acts as local variable whose value is transmitted back to the actual parameter by copying
just before control is transferred back to the caller.

o : Formal parameters receive data from and transmit data to the corresponding
actual parameters. This mode can implemented by one of three models:

- Pass-by-value-result: The value of actual parameter is used to initialize the corresponding formal
parameter by copying. Then, the value of formal parameter is transmitted back to the actual
parameter by copying just before control is transferred back to the caller.

- Pass-by-reference: Provides access path to the actual parameter.

- Pass-by-name: The actual parameter is textually substituted for the corresponding formal pa-
rameter. It is used at compile-time only by C++ macros and templates.

FCAI-CU Concepts Subprograms Amin Allam

The following example illustrates the parameter passing modes:

void Fun(in int a, out int b, in-out int <)
{
/I Initially : a=7, b=has undefined value, c=9

a=1l; b=2; c=3;

// Now: x=7 (no change), y=8 (no change)

/l'z=9 (no change) if c¢ is passed by value—result
/I z=3 (changed) if c¢ is passed by reference

a=a; b=b; c=c; // Do something

} // Immediately before function returns :
/l x=T (no change), y=2 (changed), z=3

void main ()
{
int x=7, y=8, z=9;
Fun(x, vy, z); //The above comments trace this call

4 Implementing subprogram calls

We examine the implementation of subprogram calls focusing on the call and return procedures.
Initially, we assume that the called subprograms do not contain any inner blocks. Subprograms
with inner blocks are considered later on.

Each subprogram has the following simplified typical activation record:

Return variable
Local variables
Parameter variables
Return address

Consider the following C++ function. The numbers shown on the left are the addresses of each
instruction. Note that program instructions are loaded into memory and obtain memory addresses
before they are executed. The activation record of this function is shown on the right:

int factorial (int n)

{ // Position 1 Return variable int
1004 if (n<=1) return 1; Local variable int | T
1008 int f=factorial (n-1); Local variable | int | r
1012 int r=n«f; Parameter variable | int | n
1016 return r; Return address

} // Position 2

FCAI-CU Concepts Subprograms Amin Allam

Subprogram calls are implemented in the same way for recursive and non-recursive subprograms,
but the main reason for such implementation is to support recursive subprograms.
Consider the following C++ program which calls the above function:

int main ()

{
2004 int v=factorial (3);
2008 return 0;

Each call to factorial () starts by pushing to the run-time stack an activation record instance
of the activation record of the factorial () function. The run-time stack of a specific program
is part of the main memory assigned by the operating system to this program and can be used to
allocate its stack-dynamic variables. An activation record instance (ARI) is a specific instance of
the activation record with specific allocated variables.

The call to factorial (3) in instruction 2004 starts by pushing to the run-time stack the fol-
lowing activation record instance. So, when execution reaches Position 1 for the first time, the
run-time stack contains:

Return variable int
Local variable int |
Local variable int
Parameter variable | int | n 3
Return address 2008

The return address is the address of the instruction that follows the function call instruction. This
address will be used by the compiler to know where is should continue execution (pass control)
after the function call terminates.

Since the size of an activation record instance for a specific function is known before the function
call (actually it is known at compile time), only one memory allocation is needed to allocate the
whole activation record instance which is efficient.

Then, control reaches instruction 1008 then calls factorial (2) which starts by pushing an-
other activation record instance to the run-time stack. So, when execution reaches Position 1 for
the second time, the run-time stack contains:

Return variable int

Local variable int |
Local variable int

Parameter variable | int | n 2
Return address 1012

Return variable int
Local variable int | f

Local variable int
Parameter variable | int | n 3
Return address 2008

FCAI-CU Concepts Subprograms Amin Allam

For the recursion logic to work, each function call must have its distinct set of parameters and local
variables. However, while executing a specific function call, its associated set of variables always
exist at the activation record instance at the top of the stack. Therefore, the compiler can use the
same function code to execute any function call such that it accesses its variables by knowing their
locations relatively to the top of the stack, which are the same relative locations to the top of the
activation record known at compile time.

Then, control reaches instruction 1008 again, then calls factorial (1) which starts by pushing
another activation record instance to the run-time stack. So, when execution reaches Position 1 for
the third time, the run-time stack contains:

Return variable int
Local variable int | f
Local variable int
Parameter variable | int | n 1

Return address 1012
Return variable int
Local variable int |
Local variable int

Parameter variable | int | n 2
Return address 1012
Return variable int
Local variable int |
Local variable int

Parameter variable | int | n 3
Return address 2008

Then, control reaches instruction 1004 and then Position 2 for the first time, which terminates the
call of factorial (1). The compiler saves the return value and return address in registers, then
pops the activation record instance of factorial (1) from the top of the stack. The saved return
value is assigned to the variable f of the activation record instance of factorial (2). Then,
control resumes from instruction at the saved return address 1012. Now, the activation record
instance on the top of the stack represents the set of variables associated with the factorial (2)

call, and the run-time stack contains:

Return variable int

Local variable int | 1
Local variable int

Parameter variable | int | n 2
Return address 1012

Return variable int
Local variable int | f

Local variable int
Parameter variable | int | n 3
Return address 2008

FCAI-CU Concepts Subprograms Amin Allam

Then, control reaches instruction 101 6 and the run-time stack contains:

Return variable int 2
Local variable int | 1
Local variable int | r 2
Parameter variable | int | n 2
Return address 1012

Return variable int
Local variable int |
Local variable int
Parameter variable | int | n 3
Return address 2008

Then, control reaches Position 2 for the second time, which terminates the call of factorial (2).
The compiler saves the return value and return address in registers, then pops the activation record
instance of factorial (2) from the top of the stack. The saved return value is assigned to the
variable £ of the activation record instance of factorial (3). Then, control resumes from in-
struction at the saved return address 1012. Now, the activation record instance on the top of the
stack represents the set of variables associated with the factorial (3) call, and the run-time
stack contains:

Return variable int
Local variable int | f 2
Local variable int
Parameter variable | int | n 3
Return address 2008

Then, control reaches instruction 101 6 and the run-time stack contains:

Return variable int 6
Local variable int | 2
Local variable int | r 6
Parameter variable | int | n 3
Return address 2008

Then, control reaches Position 2 for the third time, which terminates the call of factorial (3).
The compiler saves the return value and return address in registers, then pops the activation record
instance of factorial (3) from the top of the stack. The saved return value is assigned to the
variable v of the activation record instance of main () (we did not show it in the previous figures).
Then, control resumes from instruction at the saved return address 2008.

If the subprogram contains inner blocks, the compiler chooses one of the following two ways to
implement its calls:

e Each inner block is treated as a call to a subprogram with no parameters. In this case, the
activation record of the subprogram does not contain any variable local to an inner block. Each
inner block has its own activation record.

FCAI-CU Concepts Subprograms Amin Allam

e The activation record of the subprograms contains local variables which are not local to inner
blocks, and also it contains space sufficient to hold the maximum amount of storage for inner block
variables at any time during the subprogram execution, as shown in the following example:

void F (int n) Block variable int e
{ Block variable int d
int %, y, z; Block variable int c
while (...) Block variable int | band g
{ Block variable int | aand f
int a, b, c; Local variable int z
while(...) { int d, e; } Local variable int y
} Local variable int X
while(...) { int £, g; } Parameter variable | int n
} Return address

5 Simulating recursion

Consider the following recursive C++ function F () :

int F(int n)
{
// Location O
if (n<=1) return 1;
int a=n+F (n-1);
// Location 1
int b=n*F(n/2);
// Location 2
int c=n-2-(atb) %2;
int d=F(c);
// Location 3
return atb+d;

}

Suppose we need to implement F () without recursion because of one of the following reasons
(recall also the introduction lecture):

e Decrease the usage of the run-time stack assigned by the operating system.

e Run the program on embedded system environment which does not support recursion.

e Use a programming language which does not support recursion.

e Need to avoid using the run-time stack to track memory usage in limited-memory environment.
e Make a compiler simulation.

Using similar ideas to what was explained previously in this lecture, we can replace the recursive
function F () by an equivalent non-recursive function G () shown below:

FCAI-CU Concepts Subprograms Amin Allam

struct Call

{

}i

int

int n; /[parameters
int a, b, c,d; //local variables
int cur_loc; //location of next statement to be executed

G (int n) // Non-recursive version of F()

Call initial_call;
initial_call.n=n;
initial_call.cur_loc=0;

stack<Call> st;
st.push(initial_call);

int last_ret_val=0; // Return value of last finished call

while (!st.empty())
{
Call& call=st.top();

if (call.cur_loc==0)
{
if(call.n<=1)
{
// Call finished, save return value and pop stack
last_ret_val=1;
st.pop();
}
else
{
// Make new child call F(n—1) and push to stack
Call new_call;
new_call.cur_loc=0;
new_call.n=call.n-1;
st.push (new_call);

/I Update current location inside parent call
call.cur_loc=1;

FCAI-CU Concepts Subprograms Amin Allam

else if(call.cur_loc==1)

{
// Do required computations
call.a=call.n+last_ret_wval;

// Make new child call F(n/2) and push to stack
Call new_call;
new_call.cur_loc=0;
new_call.n=call.n/2;

st.push (new_call);

/' Update current location inside parent call
call.cur_loc=2;

}

else if(call.cur_loc==2)

{
/I Do required computations
call.b=call.n+*last_ret_val;
call.c=call.n-2-(call.atcall.b)%2;

// Make new child call F(c) and push to stack
Call new_call;
new_call.cur_loc=0;
new_call.n=call.c;

st.push (new_call);

/I Update current location inside parent call
call.cur_loc=3;

}

else if(call.cur_loc==3)

{
/I Do required computations
call.d=last_ret_val;

// Call finished, save return value and pop stack

last_ret_val=call.a+tcall.b+tcall.d;
st.pop () ;

return last_ret_val;

10

