
Cairo University
Faculty of Computers and Artificial Intelligence

Computer Science Department

Concepts of Programming
Languages Names and Variables Dr. Amin Allam

[For more details, refer to “Concepts of Programming Languages” by Robert Sebesta]

1 Special words

Special words in programming languages (such as int, struct, while, private, static, and else, in
C++) are used to make programs more readable by:
• Naming actions to be performed.
• Separate the syntactic parts of statements and programs.

Special words of a programming language are classified as one of the following:
• Keywords: that can be redefined to be used in other purposes, which reduces readability.
• Reserved words: that cannot be used for any other purposes, such as variable names.
In most languages, such as C++ and Java, special words are reserved words. In few languages,
such as Fortran, special words are only keywords.

2 Names

A name is a string of characters used to identify some entity in a program. Names (or identifiers) are
used to identify variables, subprograms, formal parameters, classes, and other program constructs.
A reserved word cannot be used as a name.

Names do not have a limit on length in most languages to increase readability. In most languages
such as C++, names consist of a letter followed by a string consisting of letters, digits, and un-
derscore characters. Two common naming styles are my small stack and the camel notation
mySmallStack. Such naming styles are only programming styles which are not forced by the
programming language, although built-in packages and libraries are affected by the naming style
choice of the language designers.

Some programming languages force naming rules to improve readability. For example, all variable
names in PHP must begin with a dollar sign $. In Perl, a variable name starts with a special
character ($, @, or %) which specifies its type.

In most languages, such as C++, names are case sensitive, meaning that uppercase and lowercase
letters in names are considered distinct. For example, the following names are distinct in C++:
rose, ROSE, Rose, and rOse. If case sensitivity is not used carefully by the programmer, it may
reduce readability.

1

FCAI-CU Concepts Names and Variables Amin Allam

3 Variables

A program variable is an abstraction of a computer memory cell. By a memory cell, we mean
an abstract memory cell which have enough size to hold the variable. The initial purpose for in-
troducing variables was to use them as names for memory locations to improve readability by
replacing absolute numeric memory addresses by their names. As programming languages devel-
oped, a variable gained more important meanings. Specifically, a variable is characterized by six
attributes: • Name • Type • Address • Value • Scope • Lifetime •

• Name: A name identifies a variable. Naming a variable follows the rules specified previously. A
variable may not have a name and be accessed by knowing its address.

• Type: The type of a variable determines its size, the range of values it can store, and the set of
associated operations. For example, the int type in Java specifies a value range of −231 to 231 − 1
and arithmetic operations for addition, subtraction, multiplication, division, and modulus.

• Address: The address of a variable is the machine memory address with which it is associated.
The address of a variable is called its l-value, because the address is required when the name of a
variable appears in the left side of an assignment statement. The term l-value also means a variable
which have an address (to differentiate it between a constant value which have no address).

• Value: The value of a variable is the contents of the memory cell associated with the variable. A
variable’s value is called r-value because it is required when the name of a variable appears in the
right side of an assignment statement. The term r-value also means a variable or a constant value.

• Scope: The range of statements where the variable is visible. A variable is visible in a statement
if it can be referenced in that statement. Scope is locations in source program (spatial).

• Lifetime: The time during which the variable physically exists in memory (time during which it
is associated with or bound to its storage). Lifetime is time durations at execution (temporal).

4 Aliases

Variables having the same type and address are called aliases.
Aliases can be created with reference variables in C++:

int x=10;
int& y=x; // both x and y now contain 10
x=5; // both x and y now contain 5
y=9; // both x and y now contain 9

Pointer variables holding the same address are called aliases as well, as in C++:

int* x=new int;
int* y=x;

*x=5; // both *x and *y now contain 5
*y=9; // both *x and *y now contain 9
delete x;

2

FCAI-CU Concepts Names and Variables Amin Allam

5 Named constants

A named constant is a variable that is assigned a constant value only once before run time and
remains unchanged during every execution of the program, as in the following C++/C# statement:

const int hash_size=100003;

Named constants improve readability and also parametrize programs, so that it is possible to
change the constant value at only one place inside the program instead of changing it from ev-
ery place it is used.

A named constant differs from a read-only variable which is assigned a value in its constructor
and does not change until its destruction, such as the following C# statement:

int x=get(); readonly int y=x;

which is equivalent to the following C++ statement:

int x=get(); const int y=x;

Note that C# uses two different reserved words to emphasize the two different meanings, while
C++ uses the same reserved word for two different meanings which reduces readability.

6 Binding

A binding is an association between an entity and an attribute, such as between a variable and its
type or value. The time at which binding takes place is called binding time. We are particularly
interested in the following binding times for binding attributes to variables:

• Compile time: Binding occurs during compilation (for compiled languages only).

• Load time: Binding occurs when the program is loaded into memory and ready to run (immedi-
ately before run time).

• Run time: Binding occurs while the program is running.

A binding is static if it first occurs at compile time or load time (before run time begins) and
remains unchanged throughout program execution. A binding is dynamic if it first occurs during
run time or can change in the course of execution.

In the following two sections, we study when and how a variable binds to its:

• Type: A variable may bind to its type either statically or dynamically. A variable can bind to its
storage only after it binds to its type, since its size is determined based on its type.

• Storage: A variable may bind to its storage (memory cell) statically or dynamically. Binding to
storage directly affects the address and the lifetime of the variable.

• Value: A variable may bind to an initial value statically only if it is statically bound to its storage.
Otherwise, it binds dynamically to values.

3

FCAI-CU Concepts Names and Variables Amin Allam

7 Type binding

Before a variable can be referenced in a program, it must bind to a type: statically or dynamically.

7.1 Static type binding
A variables may bind statically (before run time) to its type either explicitly or implicitly:

• Explicit declaration: A statement in a program that explicitly declares a variable and its type.

int x, y; // x and y are integer variables
double f; // f is a double precision floating point variable

• Implicit declaration: The type of a variable is implicitly deduced from the first appearance of the
variable name using one of the following ways:

- The syntactic form of the variable. For example, In early versions of Fortran, a name beginning
with certain letters such as i, j, and k is an integer. In Perl, a name beginning with a $ is a scalar
(string or numeric), with a @ is an array, and with a % is a hash structure.

- The context of the variable. The following C# example deduces the variable type from its initial
constant value:

var sum=0; var total=0.0; var name="Fred"; // int, float, string

7.2 Dynamic type binding
A variable binds to its type only when an assignment statement having the variable as its LHS is
executed during run time. In that case, the variable binds to the type of the RHS expression of the
assignment statement. Furthermore, a variable’s type can change during program execution, as in
the following JavaScript example:

list = [10.2, 3.5]; // Now, list is a single−dimensioned array of size 2
list = 47; // Now, list is a scalar integer variable

Dynamic type binding usually occur in scripting / interpreted languages, since computers do not
have instructions whose operand types are not known at compile time. Thus, dynamic type binding
is much costly / inefficient than static type binding. A similar behaviour to dynamic type binding
can be achieved to some limited extent by compiled languages, such as polymorphism in C++:

Shape* s; // Circle and Rectangle are inherited from Shape which has virtual Draw()
s=new Circle; s->Draw(); // Calls Draw() of Circle class
s=new Rectangle; s->Draw(); // Calls Draw() of Rectangle class

Dynamic type binding improves flexibility / writability since it allows writing generic programs
which can deal with different types of input variables. However, it reduces reliability since some
errors may not be detected until such generic programs eventually encounters unexpected types, or
expected types which were not meant by the programmer.

4

FCAI-CU Concepts Names and Variables Amin Allam

8 Storage binding

Before a variable can be referenced in a program, it must bind to its storage (memory cell). The
process of binding a variable to its memory cell is called allocation. The process of unbinding a
variable from its memory cell is called deallocation. The in-between time duration is the lifetime
of the variable. Variables can be categorized accordingly in in the following categories:

8.1 Static variables
Static variables are bound to memory cells at load time and remains bound to those memory cells
until program execution terminates. All Global variables and named constants are static variables.
Some subprograms or functions may require static variables to be history sensitive. The following
C++ example demonstrates the two types:

int a=2; // Global variable (static)
void F()
{

static int b=3; // Static local variable
int c=4; // Stack−dynamic local variable (not static)

}

Static variables are very efficient, since they can be accessed by direct addressing (their addresses
are known before run time) and no overhead is incorporated to allocate or deallocate them. How-
ever, static variables cannot support recursive subprograms.

Static class variables can be considered static variables with a slight difference which is they are
not necessarily bound to storage at load time. They need to bind to storage at any time before the
first class instantiation (before the first object from this class is created). A static class variable is
created only once, while an instance class variable is created for each class object.

class Student
{

int student_id; // Instance class variable (not static)
static int num_students; // Static class variable declaration

}
int Student::num_students=0; // Static class variable definition

8.2 Stack-dynamic variables
Stack-dynamic variables are bound to storage when their declaration statements are elaborated,
but whose types are statically bound. Elaboration of a declaration statement refers to the storage
allocation and binding process indicated by the declaration. Elaboration occurs when execution
reaches the declaration statement or when the function including the declaration statement is called.

Stack-dynamic variables are allocated at run time from a region in memory called the stack, and
deallocated when the called function terminates its execution. Stack-dynamic variables incur some
allocation and deallocation overhead, but they support recursive programs.

5

FCAI-CU Concepts Names and Variables Amin Allam

8.3 Explicit heap-dynamic variables
Explicit heap-dynamic variables are nameless variables that are allocated by explicit run-time
instructions called within the program. These variables bind statically to their types, but they bind
dynamically to storage at the time they are created. Since they are nameless, they can be referenced
only through pointer or reference variables. The pointer variables themselves do not need to be
heap-dynamic variables; they are often stack-dynamic variables.

Explicit heap-dynamic variables are allocated and deallocated at run time from a region in memory
called the heap. Contrary to the stack, the heap is a collection of storage cells which are highly
disorganized due to the unpredictability of their usage. Therefore, the stack and the heap are
separated as they need very different ways of management. Consider the following C++ function:

void F()
{

Student* s; // This pointer s is a stack−dynamic variable
s=new Student; // Allocate a nameless heap−dynamic variable, Store its address
delete s; // Deallocate the nameless heap−dynamic variable, but s still exists
s=new Student[100]; // Allocate a nameless heap−dynamic array, Store address
delete[] s; // Deallocate the nameless heap−dynamic array, but s still exists

} // The pointer s is deallocated when the function call terminates execution

In C++, all heap-dynamic variables must be explicitly deallocated by run-time instructions. In
Java, heap-dynamic variables are implicitly deallocated by the Java run-time garbage collector in
unspecified time after the garbage collector makes sure that the heap-dynamic variables are no
longer referenced by any existing pointer or reference. Consider the following Java function:

void F()
{

Student s; // This pointer s is a stack−dynamic variable
s=new Student; // Allocate a nameless heap−dynamic variable, Store its address
s=new Student[100]; // Allocate a nameless heap−dynamic array, Store address

} // The pointer s is deallocated when the function call terminates execution
// The heap−dynamic variable and array will be deallocated by the garbage collector

Explicit heap-dynamic variables are often used to construct dynamic data structures, such as linked
lists and trees that may need to grow and shrink during execution. They are also used to construct
very large arrays, and arrays whose size is not known before run time.

8.4 Implicit heap-dynamic variables
Implicit heap-dynamic variables bind to heap storage only when they are assigned values. Ac-
tually, when they are assigned values, they bind to both type and storage. They exist only in
interpreted languages because such variables bind dynamically to their types. The advantages and
disadvantages of such variables are previously stated in the dynamic type binding section.

6

FCAI-CU Concepts Names and Variables Amin Allam

9 Value binding

Generally, a variable binds to a value dynamically at run time. There is exactly one case when a
variable may bind statically to a value, which is when a static variable is initialized. Since a static
variable binds statically to its storage at load time, it binds to its initial value also at load time.
Consider the following C# example (note that const implies static in C#):

void F()
{

static int x=10; // Static variable, binds to the value 10 only at load time
const int y=5; // Const static variable, binds to the value 5 only at load time
int z=7; // Stack−dynamic variable, binds to 7 every time F() is called
x=9; // Not initialization , binds to 9 every time F() is called

}

Consider the following C++ example (note that all global variables are static):

int a=8; // Global static variable , binds to the value 8 at load time

10 Scope

The scope of a variable is the range of statements where the variable is visible. A variable is visible
in a statement if it can be referenced or assigned in that statement. The scope rules of a language
determine how a particular occurrence of a name is associated with a variable. The referencing
environment of a statement is the collection of all variables that are visible in that statement.

A variable is local in a program unit or block if it is declared there. The nonlocal variables of a
program unit or block are those that are visible within the program unit or block but are not declared
there. Global variables are a special category of nonlocal variables.

10.1 Static scoping
Most languages allow nested blocks. Some languages allow nested subprograms. Most languages
apply static scoping rules to nested blocks and nested subprograms.

In static scoping, the scope of a variable can be statically determined prior to execution. This
permits a human program reader (and a compiler) to determine the type of every variable in the
program simply by examining its source code.

When a variable name occurs inside a block, a declaration of a variable having that name is
searched inside that block. If not found, a declaration of such variable is searched inside the
static parent block; the innermost block enclosing the original block, and so on.

C and C++ allow a variable to be declared inside a block with the same name of another variable
declared inside any enclosing block. In that case, the outer block variable is hidden from the inner
block statements. Java and C# do not allow such naming to reduce programming errors.

7

FCAI-CU Concepts Names and Variables Amin Allam

The following example illustrates the static scoping rules by showing the referencing environments
of some Ada program points:

procedure Example is
A, B : Integer;
procedure Sub1 is

X, Y : Integer;
begin -- of Sub1
... <---------------- [RE] X,Y of Sub1 - A,B of Example
end; -- of Sub1

procedure Sub2 is
X : Integer;
procedure Sub3 is

X : Integer;
begin -- of Sub3
... <------------- [RE] X of Sub3 - A,B of Example
end; -- of Sub3

begin -- of Sub2
... <---------------- [RE] X of Sub2 - A,B of Example
end; -- of Sub2

begin -- of Example
... <------------------- [RE] A,B of Example
end. -- of Example

10.2 Dynamic scoping
Although the scope of variables in most languages is static, the scope of variables in some lan-
guages such as APL, SNOBOL4 is dynamic. Perl and Common Lisp also allow variables to be
declared to have dynamic scope, although they have a default static scoping mechanism.

Dynamic scoping is based on the calling sequence of subprograms, not on their spatial relationship
to each other. Thus, the scope can be determined only at run time.

When a variable name occurs inside a subprogram, a declaration of a variable having that name is
searched inside that subprogram. If not found, a declaration of such variable is searched inside the
dynamic parent subprogram; the subprogram that called the original subprogram, and so on.

The advantage of dynamic scoping is that the parameters passed from one subprogram to another
are variables that are defined in the caller. None of these needs to be passed in a dynamically
scoped language, because they are implicitly visible in the called subprogram.

Since references to nonlocal variables cannot be statically checked in dynamically scoped lan-
guages programs, they have less readability, reliability, and efficiency than equivalent programs in
statically scoped languages.

8

FCAI-CU Concepts Names and Variables Amin Allam

The following example illustrates the dynamic scoping rules by showing the referencing environ-
ments of some program points:

void Sub1()
{

int a, b;
... <------------ [RE] a,b of Sub1 - c of Sub2 - d of main

}
void Sub2()
{

int b, c;
... <------------ [RE] b,c of Sub2 - d of main
Sub1();

}
void main()
{

int c, d;
... <------------ [RE] c,d of main
Sub2();

}

10.3 Type checking
Type checking is the activity of ensuring that the operands of an operator, or parameters to a func-
tion, are of compatible types. A compatible type is one that either is legal for the operator / function
or is allowed under language rules to be implicitly converted by the compiler or interpreter to a
legal type. This automatic conversion is called a coercion. For example, if an int variable and
a float variable are added in Java, the value of the int variable is coerced to float and a
floating point addition is done.

The compiler or interpreter flags a type error if an operator is applied to an operand of an incom-
patible type such as % to float variables, or a parameter with incompatible type is passed to a
function such as passing an int* variable to a function that needs an int variable.

Type checking is done in one of the following ways:

• Statically: Before run time, for most constructs in compiled languages.

• Dynamically: During run time, for most constructs in interpreted languages.

• Not done at all: For few constructs such as union in C and C++.

Static type checking is better than dynamic type checking, because the earlier correction is usually
less costly and improves reliability. The penalty for static type checking is reduced flexibility /
writability / generality.

9

FCAI-CU Concepts Names and Variables Amin Allam

10.4 Type equivalence
Two types are equivalent if they are considered compatible without coercion. There are two ap-
proaches to define type equivalence:

• Name type equivalence: Two variables have equivalent types if they are defined in declarations
that use the same type. C++ and Java use name type equivalence, except for few cases such as
polymorphism. typedef in C and C++ does not introduce a new type, so types defined with
typedef fall into this category.

• Structure type equivalence: Two variables have equivalent types if their types have identical
structures. For example, all types consisting of two int variables followed by one float variable
are structurally equivalent. Fortran and COBOL use structure type equivalence.

10.5 Side effects
A side effect of a function (or operator) occurs when the function changes either one of its param-
eters or a global variable. Side effects occur only in imperative languages and may cause semantic
ambiguity in some situations. For example, consider the following C++ program:

int Fun(int& a) {a+=10; return 10;}

int a=10;
int b=a+Fun(a); // b may be 20 or 30

In C++, the parse tree of the expression a+Fun(a) determines how operands are associated to
the operator, but does not determine the evaluation order of operands. That is, we do not know
whether a or Fun(a) is evaluated first before doing the addition because evaluation order is not
specified in the C++ standard. Precedence and associativity rules define association order, but
there may exist several different compatible evaluation orders.

Similar problems occur for the expressions: ++a+a and Fun2(a,++a) because the order of
evaluating function parameters is not known as well. Such problems do not exist in Java since it
guarantees that operands are evaluated from left to right. C++ does not have similar rule to allow
the compiler to choose the order which results better optimization.

10.6 Short-circuit evaluation
A short-circuit evaluation of an expression is one in which the result is determined without evalu-
ating all parts of the expression.

C++ and Java apply short-circuit evaluation for logical && and || only. Expressions separated by
&& are evaluated from left to right. When one of them is false, evaluation stops and the whole
expression returns false. Expressions separated by || are evaluated from left to right. When
one of them is true, evaluation stops and the whole expression returns true.

If short-circuit evaluation is supported for && in a language, the expression (i<n && a[i]!=v)
will not cause any problem assuming that array a contains n elements. Otherwise, it will cause an
indexing error.

10

