= Cairo University
ﬁ Faculty of Computers and Artificial Intelligence

le Computer Science Department

Concepts of Programming

Languages BNF and Parse Trees Dr. Amin Allam

[For more details, refer to “Concepts of Programming Languages” by Robert Sebestal

1 Introduction

Every programming language must have a concise yet understandable description. Programming
language implementors (writers of compilers or interpreters) must be able to determine how the
programming constructs are formed, and their intended effect when executed. Programming lan-
guage users (programmers) must be able to code software systems by referring to the language
reference manual. The study of programming languages is divided into examining synfax and
semantics.

The syntax of a programming language is the form of its expressions, statements, and programming
units. The semantics of a programming language is the meaning of its expressions, statements, and
programming units. For example, the synfax of a Java while statement is:

while (<boolean_expression>) <statement>

The semantics of this statement form is that when the current value of the boolean expression
is true, the embedded statement is executed then the control returns to the boolean expression.
Otherwise, control continues after the while statement.

A program consists of a sequence of statements. A statement consists of a sequence of small units
called lexemes. A token of a language is a category of its lexemes. For example, consider the
following Java statement:

index=2xnum+17;

The lexemes and tokens of this statement are:

Lexeme Token

index identifier

2 integer_constant
* *

num identifier

+ +

17 integer_constant
; ;

FCAI-CU Concepts BNF and Parse Trees Amin Allam

2 Backus-Naur Form (BNF) grammar

Grammars are formal mechanisms used to describe the synfax of programming languages. One
of these mechanisms is called Backus-Naur Form (BNF) which is very similar to Context Free
Grammars (CFGs) for natural languages. The following is an example of BNF grammar for a
small language:

<program> -> begin <stmt_list> end

<stmt_list> -> <stmt> | <stmt> ; <stmt_list>

<stmt> -> <var> = <expression>

<var> -> A | B | C

<expression> -> <var> + <var> | <var> - <var> | <var>

The above BNF grammar consists of 5 rules. Each rule contains at its right hand side (RHS)
one or more definitions of the nonterminal at the left hand side (LHS) of the rule. Definitions are
separated by the metasymbol | meaning logical OR. The LHS and the RHS are separated by the
metasymbol —>. A nonterminal is an abstract symbol that helps describe part of the grammar,
but cannot appear in any program. Contrary, a ferminal can appear in programs, and distinguished
from nonterminals by not being placed inside pointed brackets. The first nonterminal in a grammar
(such as <program> in the above grammar) is the start symbol of that grammar which defines all
programs compatible with that grammar.

The first rule defines the start symbol of the grammar, which is the <program> nonterminal
occurring in the LHS of the rule:

<program> -> Dbegin <stmt_list> end

The RHS of the above rule explains how the <program> nonterminal can be possibly expanded.
The RHS consists of the begin terminal, followed by the <stmt_11ist> nonterminal which will
be defined later on, followed by the end ferminal. We conclude that a programmer should write
the special word begin at the beginning of any program conforming with that BNF grammar and
the special word end at the end of these programs. To know what can be written in-between, we
should look at the rule defining <stmt_1ist>.

The second rule defines the <stmt_11ist> nonterminal:

<stmt_list> -> <stmt> | <stmt> ; <stmt_list>

which is equivalent to the following two rules:

<stmt_list> -> <stmt>
<stmt_list> -> <stmt> ; <stmt_list>

which mean that a <stmt_1ist> can be one of: (1) One <stmt>. (2) A <stmt> followed by
the semicolon (;) terminal, followed by a <stmt _11ist>. This recursive definition means that a
<stmt_11ist> may consist of any number (> 1) of <stmt>s separated by semicolons.

Similarly, we conclude from the remaining rules that each statement is an assignment where the
RHS can be a variable or two added/subtracted variables. Allowed variables are A, B, and C.

FCAI-CU Concepts BNF and Parse Trees Amin Allam

3 Derivations and parse trees

The BNF grammar can be viewed as a generating device which can generate all programs com-
patible with that grammar. Generating a specific program is called a derivation. The following
example is a derivation from the above BNF to the program: begin A=B+C; B=C end. Any
derivation must begin from the start symbol.

<program> => begin <stmt_list> end
=> begin <stmt> ; <stmt_list> end
=> begin <var>=<expression> ; <stmt_list> end
=> begin A=<expression> ; <stmt_list> end
=> begin A=<var>+<var> ; <stmt_list> end
=> begin A=B+<var> ; <stmt_list> end
=> begin A=B+C ; <stmt_list> end
=> begin A=B+C ; <stmt> end
=> begin A=B+C ; <var>=<expression> end
=> begin A=B+C ; B=<expression> end
=> begin A=B+C ; B=<var> end
=> begin A=B+C ; B=C end

The above derivation is called leftmost derivation because of the performed order. There can be
different derivation orders for the same program. A program which cannot be derived from a
specific BNF grammar does not belong to the language generated by that BNF.

The hierarchical structure of a program is called a parse tree. The following figure is the parse tree
of the program: begin A=B+C; B=C end from the BNF of the previous section:

<program>

|begin| |<stmt_|ist>| |end|

<stmt> D <stmt_list>

el

<var> <expression> <stmt>

|<var>| |<var>| B |<expression>|

! L
s

(]

FCAI-CU Concepts BNF and Parse Trees Amin Allam

4 Ambiguity, precedence, and associativity

If there exists a program (or part of program) that has two or more distinct parse trees compatible
with a given grammar, the grammar is said to be ambiguous. For example, consider the following
grammar for simple assignment statements:

<assign> —-> <id> = <expr>
<expr> —-> <expr> + <expr> | <expr> x <expr> | (<expr>) | <id>
<id> -> A | B | C

The above grammar is ambiguous because there exists a statement: A=B+CxA which has the
following two distinct parse trees:

e e s [oo

/\R /\R
2] o) Br == o G4
B [<id> [<id> [<id> [<id> (]
g [A] B g

For the above parse trees of the statement A=B+CxA, the compiler may choose to implement the
second parse tree which is equivalent to the statement A= (B+C) A although the programmer may
have intended to write the statement A=B+ (C+A) which corresponds to the first parse tree and has
very different meaning.

Generally, if a language structure has more than one parse tree, then the meaning of the structure
cannot be determined uniquely. The compiler may choose to implement the meaning which was
not intended by the programmer. An ambiguous grammar should be written to be unambiguous.
Specifying operator precedence and associativity can resolve ambiguities caused by the existence
of multiple operators without parentheses in the same statement.

Operator precedence is the order of associating operands to operators in the same statement. That
is, precedence determines which operator gets its operands first. An operator with higher prece-
dence is associated to its close operands before an operator with lower precedence does. For ex-
ample, if multiplication = has higher precedence that addition +, the statement A=B+C«A should
be mapped to the first parse tree which is equivalent to the statement A=B+ (C+A) . Note that if
parentheses are absent, operators with higher precedence should appear lower in the parse tree. In
the first parse tree, multiplication must be evaluated before addition because the addition operation
needs the multiplication result. Parentheses () can be viewed as a construct that has a precedence
higher than other operators in most programs.

FCAI-CU Concepts BNF and Parse Trees Amin Allam

The following BNF grammar is unambiguous since it assigns higher precedence to multiplication
than addition by forcing multiplication to be lower in the parse tree. Since parentheses have the
highest precedence, they are forced to be lowest in the parse tree:

<assign> —-> <id> = <expr>

<expr> -> <expr> + <term> | <term>
<term> -> <term> * <factor> | <factor>
<factor> -> (<expr>) | <id>

<id> -> A | B | C

In this BNF grammar, there exists the following unique parse tree for the statement A=B+CxA:

W] [

<term> <term> <factor>

|<factor>| |<factor>| Ed>
|<id>| |<id>| |K|

C

The previous discussion explained the parse tree if multiple operators with different precedence
appear in the same statement without parentheses. However, we did not discuss what should be the
parse tree if multiple operators with the same precedence appear in the same statement.

Operator associativity is the order of associating operands to operators having the same precedence
in the same statement. That is, for operators with equal precedence, associativity determines which
operator gets its operands first. Left associative operators with the same precedence are associated
to their close operands in their order from left to right. Right associative operators with the same
precedence are associated to their close operands in their order from right to left.

The multiplication and addition operators in last BNF grammar are left associative, since the re-
lated BNF rules are left recursive. A rule is said to be left recursive if its LHS (left hand side) also
appears at the beginning of its RHS (right hand side):

<expr> -> <expr> + <term> | <term>

To indicate right associativity, the related BNF rule should be right recursive. A rule is said to be
right recursive if its LHS also appears at the right end of its RHS, such as exponentiation A:

<factor> -> <newexp> A <factor> | <newexp>

FCAI-CU Concepts BNF and Parse Trees Amin Allam

Consider the following table of some operators ordered in groups from highest precedence to
lowest precedence:

’ Operator \ Description \ Associativity \ Type \ Example
A Exponentiation right to left | Binary | aAb
* / Multiplication and division | left to right Binary | axb
+ - Addition and subtraction left to right | Binary | a+b

The following BNF grammar is compatible with the above table:

<assign> —-> <id> = <expr>

<expr> -> <expr> + <term> | <expr> - <term> | <term>
<term> -> <term> x <factor> | <term> / <factor> | <factor>
<factor> —-> <newexp> A <factor> | <newexp>

<newexp> -> (<expr>) | <id>

<id> -> A | B | C

According to the above grammar, the statements A=B+C+A and A=BACAA have the following
parse trees:

e
m <id> E| <expr>
9] [

m <term>
<term>
<fac@

<expr> |<_term>| |<factor>| / \
[cnewexp>] [7]

|<id>| |<newexp>| <factor>
@ Ed> <newexp>
d <o
[A]
The above BNF grammar forces the left addition of the statement A=B+C+A to be lower in its
parse tree, hence it will be evaluated first, because addition is left associative. While the right

exponentiation of the statement A=BACAA is lower in its parse tree, hence it will be evaluated
first, because exponentiation is right associative.

<term> | <factor> | | <id> |

<fac@ Ed> @
<] d

FCAI-CU Concepts BNF and Parse Trees Amin Allam

The following table summarizes properties of some important C++ operators (ordered in groups
from highest precedence to lowest precedence). Similar tables exist for other languages:

’ Operator \ Description \ Associativity \ Type \ Example
++ —= Postfix increment and decrement left toright | Unary | a++
+ - Unary plus and minus right to left Unary | —-a
++ —— Prefix increment and decrement right to left | Unary | ++a
! Logical NOT right to left | Unary | !a
(type) C-style cast righttoleft | Unary | (double)a
x /% Multiplication, division, and remainder | left to right | Binary | axb
+ - Addition and subtraction left to right | Binary | a+b
< <= Relational < and < left to right | Binary | a >= Relational > and > left to right | Binary | a>b
== |= Relational = and # left to right | Binary | a==b
&& Logical AND left to right Binary | a&s&b
| Logical OR left to right Binary | a| |b
= Assignment right to left Binary | a=b
x= /= %= | Compound assignment right to left Binary | ax=b
+= —= Compound assignment right to left | Binary | a+=b

5 Extended BNF (EBNF) grammar

Extended BNF (EBNF) is a similar grammar to BNF which attempts to improve its readability
and writability. The following BNF grammar is almost equivalent to the last BNF grammar in the
previous section, except that associativity information is missing:

<assign> -> <id> = <expr>
<expr> -> <term> { (+ | =) <term> }
<term> -> <factor> { (= | /) <factor> }

<factor> —> <newexp> { A <newexp> }
<newexp> —-> (<expr>) | <id>
<id> -> A | B | C

The braces (curly brackets) { } metasymbol can be used to indicate that the inside construct can be
repeated zero or more times. For example, the following rule:

<factor> —-> <newexp> { A <newexp> }

means that <factor> can be expanded into <newexp> or <newexp>/A<newexp> or
<newexp>A<newexp>A<newexp>, €tcC.

The {}* metasymbol can be used to indicate that the inside construct can be repeated one or more
times. For example, the following rule:

<program> —> begin { <stmt> }T end

means that a <program> can include one or more <stmt>.

FCAI-CU Concepts BNF and Parse Trees Amin Allam

The parentheses () metasymbol can be used with the | metasymbol to indicate that exactly one
of the inside constructs must be chosen. For example (+ | -) can be replaced by + or —.
Hence, the following rule:

<expr> —> <term> { (+ | -) <term> }

means that <expr> can be expanded into <term> or <term>+<term> or <term>-<term>
or <term>+<term>+<term>or<term>t+<term>—-<term>or<term>—-<term>+<term>
or <term>—-<term>—-<term> or <term>+<term>+<term>+<term>, etc.

The brackets [] metasymbol can be used to indicate that the inside construct is optional. That is,
it can be ignored or used (zero or one times). For example, the following rule:

<selection> —-> if (<expr>) <stmt> [else <stmt>]

means that <selection> can be expanded into i f (<expr>) <stmt>
orif (<expr>) <stmt> else <stmt>.

Since associativity information is missing, it should be included verbally with the EBNF rules.

6 Attribute grammars

Attribute grammars are extensions to BNF grammars that can describe some aspects of syntax
which are impossible or difficult to be described using BNF grammars. Such syntactic aspects are
called static semantics, although such naming does not seem to be accurate. Attribute grammars
are just BNF grammars augmented with:

e Artributes associated with some grammar symbols (terminals and nonterminals). Most attributes
get their values determined from other attributes, except for intrinsic attributes which are associ-
ated with leaf nodes and get their values determined from outside the parse tree,

e Attribute computation functions associated with some grammar rules to specify how attribute
values are computed.

e Predicates associated with some grammar rules to specify additional syntactic rules.

Consider the following BNF grammar:

<assign> -> <var> = <expr>
<expr> -> <var> + <var> | <var>
<var> -> A | B | C

Suppose we wish to add the following syntactic restrictions to the above grammar:

e Each variable and expression has a type which is either int or real.
e An int can be added to another int to result an int.

e A real can be added to another variable (int or real) to result a real.
e The LHS type of any assignment must match the type of its RHS.

To incorporate the above restrictions, we associate an attribute called t ype to the nonterminals
<var> and <expr>. Additionally, we augment the BNF rules with attribute computation func-
tions and predicates as follows:

FCAI-CU Concepts BNF and Parse Trees Amin Allam

Syntax rule: <assign> -> <var> = <expr>
Predicate: <var>.type == <expr>.type

Syntax rule: <expr> —> <var>[1] + <var>[2]

Attribute computation function:
if (<var>[1l].type == int AND <var>[2].type == int)
then <expr>.type <- int
else <expr>.type <- real

Syntax rule: <expr> -> <var>
Attribute computation function:
<expr>.type <- <var>.type

Syntax rule: <var> -> A | B | C
Attribute computation function:
<var>.type <- lookup (<var>.string)

The lookup function looks up a variable name in the symbol table and returns the variable’s
type. The parse tree is constructed using the original BNF rules which are called synfax rules in
the above attribute grammar. While constructing the parse tree, attribute computation functions
are applied to determine the attribute values. Predicates are checked for validation. If a predicate
value is not true, the whole construction is considered invalid.

7 Operational semantics

Operational semantics is a method to describe the semantics of a programming construct. Such
described semantics are sometimes called dynamic semantics to differentiate them from static
semantics described in the previous section. The basic idea of operational semantics is to describe
the language constructs in terms of simpler well-known language constructs! Although the terms
simpler and well-known cannot be well-defined, this method is probably the most practical way to
describe semantics. The following is an example to describe a C statement in terms of a simpler
language:

| C Statement | Meaning

exprl;
for (exprl; expr2; expr3) | loop: if expr2==0 goto out

{

ce expr3;
} goto loop
out:

