
Cairo University
Faculty of Computers and Artificial Intelligence

Computer Science Department

Concepts of Programming
Languages Introduction Dr. Amin Allam

[For more details, refer to “Concepts of Programming Languages” by Robert Sebesta]

1 Benefits of studying concepts of programming languages

• Increasing the ability to describe programs: Programmers are usually not aware of all features
supported by the programming languages they use. By learning the capabilities of programming
languages, programmers can use such capabilities to simplify thinking, designing, and writing pro-
grams. Programmers may also simulate such capabilities within a specific programming language
which does not support them. As a result, the process of software development is simplified.

• Increasing the ability to choose appropriate programming language: By understanding the basic
concepts and features of various programming languages, a programmer will have the ability to
choose the most appropriate programming language for a considered project, without detailed
previous knowledge of that programming language.

• Increasing the ability to learn new language: Understanding the fundamental concepts and vo-
cabulary of programming languages simplifies significantly the process of learning new program-
ming languages and reading programming language descriptions and literature.

• Understanding the significance of implementation: By understanding how programming con-
cepts are implemented, a programmer can utilize the programming language features more effi-
ciently, or at least to know the program parts which can possibly cause inefficiency. Also, using
such knowledge, a programmer can find and fix certain kind of program bugs (errors).

• Improving the design of programming languages: By understanding various programming lan-
guage features, programmers can understand the benefits and limitations of existing programming
languages. As a result, they may come up with a better design of new programming languages, or
improving the design of existing ones.

2 Programming domains

• Scientific applications: Engineering applications with large number of arithmetic computations.
• Business applications: Facilitates producing reports using decimal arithmetic and character data.
• Artificial intelligence: Symbolic computations suitable for deducing information from data.
• Systems programming: Operating systems control computer devices and external devices.
• Web software: Markup languages and scripting languages for dynamic web contents.

1



FCAI-CU Concepts Introduction Amin Allam

3 Evaluating programming languages

In order to be able to recognize the advantages and limitations of programming languages, or the
suitability of a programming language to a considered application or project, we should be able to
evaluate programming languages. For this purpose, we consider the following evaluation criteria:

• Readability: The ease with which programs of a language can be read and understood.
•Writability: How easily a language can be used to create programs for a chosen problem domain.
• Reliability: The ability of programs to conform with its specifications under all conditions.
• Maintainability: The ease of correcting, modifying, and enhancing existing programs.
• Efficiency: The amount of memory and processor time consumed when running programs.
• Portability: The ability to run programs on different operating systems and hardware.
• Generality: The applicability of a language to a wide range of applications.

Some of the above evaluation criteria are strongly correlated. For example, readability usually
(but not necessarily) enhances writability because writing a program can be viewed as modifying
a small program several times until it is finished. Thus, if it can be read easily, it can be easily
written as well. If a program is readable and writable, the ratio of errors in the program will be
small, and then its reliability and maintainability will improve.

The following language characteristics contribute to some of the above evaluation criteria:

3.1 Simplicity, expressivity, and orthogonality
A programming language is simple if it consists of a small number of basic constructs to be learned.
Simplicity allows programmers to easily learn the programming language. Therefore, it enhances
readability because the program reader needs to save in his mind a small amount of information to
be able to understand the program. A programming language is expressive if it consists of a set of
constructs that allow compact programs to perform a lot of computations. Therefore, it enhances
writability. Consider the following C++ statements:

a=a+1;
a+=1;
a++;
++a;

The above 4 statements are different syntactic alternatives to do the same thing, which is adding
1 to the variable a. Therefore, for this operation, C++ is expressive but not simple. This requires
a programmer to learn the 4 ways to be able to read C++ programs, so it reduces readability. A
programmer can write a compact statement such as a++; which enhances writability.

Operator overloading is another feature which improves expressivity since a programmer can over-
load an existing operator to do a new action. However, it reduces simplicity since it adds a new
functionality to the language which should be learned by whoever needs to read such program.
Note that if the programmer carefully uses operator overloading such that it behaves similarly to
the original behaviour of the programming language but with new data types, that will not reduce
simplicity but still enhances expressivity. This is called orthogonality.

2



FCAI-CU Concepts Introduction Amin Allam

Orthogonality means that a relatively small set of primitive constructs can be combined in a rela-
tively small number of ways to define the language behaviour, such that every legal combination
of primitives is meaningful. So, orthogonality combines simplicity and expressivity. For example,
the C++ statement a+b can be used to add two integers, two floating point numbers, or an integer
and a floating point number, depending on the data types of the variables a and b. The language
construct is considered simple because the programmer does not need to save in his mind anything
except that the + operator adds two things and returns the result. However, the construct is expres-
sive because it can be used to add several different pairs of things. Contrary, in some assembly
languages, different addition instructions are used according to the parameter types. Another ex-
ample of lack of orthogonality in C++ is that all parameters can be passed by value, except for
arrays which can never be passed by value. A programmer needs to save in his mind that array
elements are actually passed by reference although they look as if they are passed by value.

3.2 Control statements
The existence of adequate control statements in a programming language significantly enhances
its readability and writability. For example, consider the following C++ code:

inc=100;
while(inc>3)
{

while(sum<=1000)
{

sum+=inc*inc;
}
inc/=2;

}

If the language does not contain a while statement, the code will probably look like:

inc=100;
loop1:

if(inc<=3) goto out;
loop2:

if(sum>1000) goto next;
sum+=inc*inc;
goto loop2;

next:
inc/=2;
goto loop1;

out:

The presence of control statements does not guarantee that programs will be readable. The pro-
grammer should use them intelligently and meaningfully, and should provide adequate padding
and spacing within the control statements.

3



FCAI-CU Concepts Introduction Amin Allam

3.3 Data types and structures
The presence of good ways to define data types and structures in a language improves readability.
For example, if the language contains a boolean data type, an indicator flag can be set by:

timeOut=true;

Otherwise, we will use a numeric value whose meaning is not very clear:

timeOut=1;

Also, to construct an array of 20 students in C++:

struct Student
{

char name[100];
int level;
double gpa;

};
Student s[20];

If it is not possible to define new data types in C++, we will be obligated to use arrays that do not
seem to have any connection, which reduce readability.

char name[20][100];
int level[20];
double gpa[20];

3.4 Syntax design
The syntax or form of language elements has a significant effect on readability. In some old
languages there was a restriction on identifier length, which reduces readability. The existence of
specific special words may enhance readability, such as using end loop and end if instead
of } to close while and if blocks. If a language allows using special words as variable names,
readability may be reduced.

The appearance of statements and special words should help understand its purpose to improve
readability. This principle is somehow violated if two language constructs are identical or similar
in appearance but have different meaning. For example, in C++, the meaning of the reserved word
static depends on its context. If used to define variable inside a function, it means that the
variable is created before runtime and remains allocated until the end of the program. If used
to define a variable outside all functions, it means that the variable is visible only within the file
where the definition appears. Another example in C++, the reserved word const has the meaning
of ‘constant’ if the variable is initialized with a constant value, otherwise it has the meaning of
‘read only’. The mentioned examples reduce readability.

Also, a language supporting high degree of abstraction has high writability. Abstraction is the
ability to define and then use complicated structures or operations in ways that allow many of the
details to be ignored. It will be discussed in an upcoming lecture later on.

4



FCAI-CU Concepts Introduction Amin Allam

3.5 Type checking
Type checking is testing for type errors in a given program, either by the compiler or during program
execution. A language which checks for type errors is much more reliable than a language which
does not. A language which checks for type errors in compile time is much more reliable than a
language which checks for them during program execution, because if the compiler detects a type
error, the programmer will fix it before providing the user with the program.

For example, suppose that a program passes a floating point variable as a parameter to a function
which expects an integer variable. If the compiler did not detect such type error to do implicit
conversion or at least to signal an error to the programmer, the function will not be able to correctly
detect the intended passed value.

3.6 Exception handling
Exception handling is the ability of a program to intercept runtime errors, take corrective actions,
and then continue according to the program specifications. A language supporting exception han-
dling is reliable if the programmer effectively utilizes this feature.

3.7 Aliasing
Aliasing is having two or more distinct names in a program that can be used to access the same
memory cell. Aliasing is an important feature which is required in several situations in program-
ming, such as parameter passing and shared objects. However, the excessive usage of aliasing may
reduce reliability since it causes program bugs if the programmer forgot that changing the value of
a variable affects the value of its alias as well.

4 Implementation methods

To run a program, one of the following methods is used, according to the programming language:

4.1 Compilation
Programs are translated into machine language only once, by another program dedicated for this
purpose called a compiler. A compiler takes a program written in the source language of a spe-
cific programming language, and translates it into a program written in machine language (the
executable) suitable to the used machine and the running operating system. Once the program is
compiled, it can be run several times on that specific machine and operating system configuration
without any additional compilation. The compiler usually performs important optimizations to
increase the runtime efficiency of the program. Also, since the compiler has the chance to detect
several errors during compilation time, program reliability is expected to improve.

Compilation is preferred for desktop applications and embedded systems, because such programs
run several times, therefore runtime efficiency and reliability are needed.

5



FCAI-CU Concepts Introduction Amin Allam

4.2 Interpretation
Programs are interpreted into machine language line-by-line by another program dedicated for
this purpose called an interpreter. To execute a program, an interpreter takes a program written in
the source language of a specific programming language, and executes its statements line-by-line.
That is, running the program is mixed with its interpretation. The interpreter takes the first line
of the program, interprets it to machine language, then executes it, then determines the next line
according to the execution scenario, then interprets the next line, and so on. This process is done
each time the program runs. Since running is mixed with interpretation, interpreted programs are
much slower than compiled programs. For example, each statement within the body of a loop is
interpreted to machine language from scratch every time it is executed. Some languages, such as
scripting languages, can be interpreted but can never be compiled.

Interpretation is preferred for web client applications, because such programs are created on-the-
fly according to a response from the web server applications. Since web client applications run very
few times when that particular web page is browsed, and the nature of such programs is simple,
compilation will not significantly improve runtime efficiency or reliability.

5 Programming languages categories

The following programming language categories are not disjoint. One language can be classified
into several categories. For example, Javascript is imperative, object-oriented, and scripting.

• Imperative/Procedural languages: Ordinary languages which consist mainly of data and proce-
dures (sequences of statements to be executed), and are considered as high level simplification of
machine languages for von-Neumann machines. Examples: Assembly, Fortran, C.

• Object-oriented languages: Subset of imperative languages which encapsulate processing with
data objects and control access to data, and add inheritance and dynamic method binding. Exam-
ples: Smalltalk, C++, Java.

• Scripting languages: Subset of imperative languages which are interpreted, not compiled. Ex-
amples: Javascript, Perl, Python.

• Declarative/Functional/Logic languages: Rule-based languages where rules are specified in no
particular order, and no particular procedure is specified. The language execution system must
choose an algorithm and an execution order to produce the required results. Examples: Prolog,
LISP, Haskell.

• Markup languages: Languages used to describe something. They are similar to declarative
languages in avoiding procedures, with the difference that rules are replaced by descriptive items.
Some of these languages include few procedures. Examples: XHTML (specifies the layout of
information in web documents), XML, Latex.

• Special-purpose languages: Languages dedicated for specific applications. They have narrow
applicability but they are very effective for their purpose. Mathematical programs should be writ-
ten in mathematical notation. Data processing programs should be written in English statements
(Wexelblat). Examples: COBOL (computing business records), GPSS (systems simulation).

6


