
Cairo University
Faculty of Computers and Artificial Intelligence

Computer Science Department

Advanced Data Structures Disjoint Sets Dr. Amin Allam

[For more details, refer to “Introduction to Algorithms” by Thomas Cormen, et al.]

1 Disjoint sets

A disjoint sets data structure contains a number of disjoint sets where each set contains at least one
element. Sets can be combined such that different sets have different identifiers and each element
is a member of exactly one set.

A disjoint sets data structure is usually initialized by creating n disjoint sets where each set contains
exactly one element (singleton sets). The identifiers of these elements range from 0 to n− 1. The
initial identifier of each set equals to the identifier of its element. Set identifiers can change during
execution but element identifiers do not change.

A disjoint sets data structure allows two operations: Find(a) and Union(a, b).
Find(a) returns the set identifier of the set containing the element whose identifier is a.
Union(a, b) unions the two sets containing the two elements whose identifiers are a and b.

To implement a disjoint sets: Each set is represented by a tree, where each tree node stores the
identifier of an element that belongs to this set. Each tree node also contains a link to its parent.
Links to children are not required. The set identifier equals to the element identifier stored at the
root. An array of integers p[] where p[i] is the index of the parent of element i is enough to represent
all these trees.

According to the above implementation, Find(a) is implemented by following the chain of parents
starting from element a until we reach the root of this tree, then returning the set identifier which
equals to the element identifier at the root.

Union(a, b) can be implemented by calling sa = Find(a), sb = Find(b), then letting sa to be
the parent of sb or vice versa. That is, by letting the root of the tree containing a to be parent of
the root of the tree containing b. Thus, sa becomes the set identifier of all elements in the two sets
making it actually one set. This procedure is correct but the height of some trees may grow up to
O(n) causing Find() calls to be very inefficient.

Fortunately, we can restrict the height of all trees to O(log n) if we implement Union(a, b) exactly
as above with a minor modification: Let the root of the tree containing more elements to be the
parent of the root of the tree containing less elements. This is called the weight rule, and it requires
storing the number of elements of each set in its tree root.

Thus, if the height of all trees is O(log n), the time complexity of Find() is clearly O(log n).
Union() consists of two calls to Find() plus O(1) additional work. Therefore, Union() time
complexity is O(log n) as well. Now, it remains to prove that the height of any tree is O(log n) ∗.

1



FCAI-CU AdvDS Disjoint Sets Amin Allam

In the following example, a disjoint sets structure is initialized by creating 5 elements whose iden-
tifiers are 0 to 4. Initially, there are 5 sets, each set corresponds to a one-node tree, contains exactly
one element, and has the same identifier as the contained element. Root nodes are coloured red
while non-root nodes are coloured yellow. The number of elements in each set is shown below
its tree root. Element identifiers exist inside the circles. The following operations are performed:
Union(1, 2), Union(3, 4), Union(0, 1), Union(1, 3). Note that we always link roots.

Initial configuration:
Find(0)=0 Find(1)=1 Find(2)=2
Find(3)=3 Find(4)=4

0

1

1

1

2

1

3

1

4

1

Union(1, 2)
Find(0)=0 Find(1)=2 Find(2)=2
Find(3)=3 Find(4)=4

0

1

2

2

3

1

4

1

1

Union(3, 4)
Find(0)=0 Find(1)=2 Find(2)=2
Find(3)=4 Find(4)=4

0

1

2

2

4

2

1 3

Union(0, 1)
Find(0)=2 Find(1)=2 Find(2)=2
Find(3)=4 Find(4)=4

2

3

4

2

0 1 3

Union(1, 3)
Find(0)=2 Find(1)=2 Find(2)=2
Find(3)=2 Find(4)=2

2

5

0 1 3 4

∗ Starting with singleton sets and performing Union() operations using weight rule, a tree t con-
taining N(t) nodes has height H(t) ≤ log2N(t). (height = distance from root to farthest leaf)

Proof: By induction on the number of nodes N(t) of a tree t:
Base step: When N(t) = 1, the tree contains one node so its height H(t) = 0 ≤ log2N(t).
Induction step: When N(t) ≥ 2, consider the last union operation performed to result the tree t
from two trees a and b where 1 ≤ N(a) ≤ N(b) < N(t):

Since N(a) ≤ N(b) and N(a) +N(b) = N(t) thus N(a) +N(a) ≤ N(t) so N(a) ≤ N(t)/2.
Both N(a) and N(b) are less than N(t), so we can apply induction to assume that:
• H(a) ≤ log2N(a) ≤ log2N(t)/2 = log2N(t)− log2 2 = log2N(t)− 1.
• H(b) ≤ log2N(b) < log2N(t). (because log is an increasing function)

After performing union based on the weight rule, H(t) = max(H(a) + 1, H(b)).
Since H(a) + 1 ≤ log2N(t) and H(b) < log2N(t), thus H(t) ≤ log2N(t).

2


