
Cairo University
Faculty of Computers and Artificial Intelligence

Computer Science Department

Advanced Data Structures Range and Kd Trees Dr. Amin Allam

[For more details, refer to “Introduction to Algorithms” by Thomas Cormen, et al.]
[For more details, refer to “Advanced Data Structures” by Peter Brass]

1 Range tree

A range query asks for the set of stored points (values) belonging to the query interval (range)
[lo, hi]. A simple red-black tree can answer range queries, by initially searching for the minimum
stored value ≥ lo and reporting it, then successively executing the following GetSuccessor(node)
procedure from the last visited node several times until a node containing a value ≥ hi is returned.
After each call (except possibly the last one), the returned node value is reported.

GetSuccessor(node)
if (node. right 6= null)
then

node← node. right
while (node. left 6= null) node← node. left
return node

else
while (node 6= root)

if (node= node.parent. left) then return node.parent
node← node.parent

return null

Note that the parent field need not to be explicitly stored in each node. Alternatively, Whenever
we go from a node to its left child, the node is pushed into a stack of parents to be used whenever
needed. Whenever we go from a right child to its parent, that parent is popped from the stack. The
size of such stack is O(log n) where n is the number of values stored in the balanced tree.

The visited nodes belong to one of the following set of nodes:
• The O(log n) nodes on the path from root to the node having value ≥ lo.
• The k nodes containing values belonging to the query range.
• The O(log n) nodes on the path from root to the node having value ≥ hi.

Each of the above nodes is visited at most 3 times: when it is reached from its parent, when it is
reached from its left child, and when it is reached from its right child. Therefore, the complexity
of executing GetSuccessor() k successive times to answer a range query is O(log n+ k).

Unfortunately, the above method cannot be easily generalized to higher dimensions, such as re-
trieving all two dimensional points inside a query rectangle.

1



FCAI-CU AdvDS Range and Kd Trees Amin Allam

The orthogonal 2d range tree is a static data structure which answers 2d range queries. It retrieves
all two dimensional points (x, y) inside a query rectangle {[qx. lo, qx.hi], [qy. lo, qy.hi]}. The
orthogonal 2d range tree is built in the following way:
•All input points are sorted based on its first (x) coordinate. A static binary search tree keyed by x
is built such input points are stored in leaves, as shown inside the light-orange rectangle below. The
remaining levels are constructed such that the tree is balanced and the key of each internal node
is the smallest x in its right subtree. Each internal node stores an interval spanning the smallest
and largest x existing in its subtree. Contrary to ordinary binary search trees, internal nodes only
guides the search queries and do not store actual input points data.
• For each node nodex in the basic tree keyed by x constructed above: construct an associated tree
exactly as described above, except that it stores only input points existing in the subtree of nodex
and keyed by the second (y) coordinate. The figure shows only some of these trees.

1

[1,1]

3

[3,3]

4

[4,4]

5

[5,5]

6

[6,6]

7

[7,7]

8

[8,8]

9

[9,9]

3

[1,3]

5

[4,5]

7

[6,7]

9

[8,9]

4

[1,5]

8

[6,9]

6

[1,9]

(1,4) (3,8) (4,10) (5,2) (6,7) (7,3) (8,1) (9,5)

3

[3,3]

7

[7,7]

7

[3,7]

(7,3) (6,7)

2

[2,2]

4

[4,4]

8

[8,8]

10

[10,10]

1

[1,1]

3

[3,3]

5

[5,5]

7

[7,7]

4

[2,4]

10

[8,10]

3

[1,3]

7

[5,7]

8

[2,10]

5

[1,7]

(5,2) (1,4) (3,8) (4,10) (8,1) (7,3) (9,5) (6,7)

10

[10,10]

8

[8,8]

7

[7,7]

5

[5,5]

4

[4,4]

3

[3,3]

2

[2,2]

1

[1,1]

10

[8,10]

7

[5,7]

4

[3,4]

2

[1,2]

8

[5,10]

3

[1,4]

5

[1,10]

(4,10)

(3,8)

(6,7)

(9,5)

(1,4)

(7,3)

(5,2)

(8,1)

The following O(log2 n+ k) procedure reports all k input points belonging to a query rectangle:

• If the range tree interval is disjoint from the x query interval, stop following the path down.
• If the range tree interval partially overlaps the x query interval, follow both paths down.
• If the range tree interval is entirely contained in the x query interval, stop following the path
down, and do the following starting from the root of the associated tree of the current node:

• If the range tree interval is disjoint from the y query interval, stop following the path down.
• If the range tree interval partially overlaps the y query interval, follow both paths down.
• If the range tree interval is entirely contained in the y query interval, stop following the path
down, and report all input points stored in the leaves of this subtree:

2



FCAI-CU AdvDS Range and Kd Trees Amin Allam

The above complexity follows because each interval of one query coordinate is actually decom-
posed similarly to the canonical representation decomposition of size O(log n) described in the
segment tree lecture.

To retrieve all two dimensional points (x, y) inside the query rectangle {[x=1, x=8], [y=2, y=5]}:
First, we search for the interval [x=1, x=8] in the basic tree to reach the intervals {[1,5],[6,7],[8,8]}.
For each node associated with these intervals, we search for [y=2, y=5] in its associated tree.

Searching for [y=2, y=5] in the associated tree of [1, 5] shown in the left bottom corner in the
above figure, starting from the root [2, 10] we reach the node [2, 4] which is entirely contained in
[2, 5] so we report all input points in the leaves of the subtree of [2, 4] which are [5, 2] and [1, 4].

Searching for [y=2, y=5] in the associated tree of [6, 7], starting from the root [3, 7] we reach the
node [3, 3] which is entirely contained in [2, 5] so we report the one input point this subtree of
[3, 3] which is [7, 3]. Searching for [y=2, y=5] in the associated tree of [8, 8] (which is not shown
in the figure) does not lead to any results.

An orthogonal 2d range tree can be built by sorting all input points based on its x coordinate (if
two input points have equal x coordinate, they are compared based on their y coordinate), and then
recursively calling the following procedure root← Build2dRangeTree(p[0 . . . n]):

Function Build2dRangeTree(p[ist . . . iend]): ist = start index, iend = 1+ last index
• imed← b(ist+iend)/2c (index of median point of p[ist . . . iend-1]
• Construct root node • root.key← p[imed].x • root. interval← [p[ist].x, p[iend-1].x]
• root. left← Build2dRangeTree(p[ist . . . imed-1])
• root. right← Build2dRangeTree(p[imed . . . iend])
• root.assoc tree← Construct static binary search tree for all p[ist . . . iend-1] points keyed by y
• return root

Let T (n) be the time complexity of the above algorithm. The non-recursive part consists mainly
of constructing root.assoc tree, which can be done by sorting points by y in O(n log n) then
constructing higher levels in O(n). The sorting part can be replaced by just O(n) merging of
two sorted arrays if the recursive function returns also the points sorted by y. Therefore, the non-
recursive part is only O(n) time and space. Thus, the time and space complexity of the whole
algorithm is T (n) = 2T (n/2) +O(n). Solving the recurrence leads to T (n) = O(n log n).

When sorting input points based on its y coordinate, if two input points have equal y coordinate
values, they are compared based on their x coordinate values. The reason is that binary search
trees do not behave properly if equal keys occur. We need to differentiate between keys using any
method, such that the same chosen method is used every time two keys need to be differentiated.
If several points coincide, only one of them should be stored in the tree.

Similarly, the above technique can be generalized to any number of dimensions d. An orthogonal
range tree with d dimensions mainly consists also of a basic tree based on the first coordinate (x)
values of all points, but the associated tree of each node nodex should be an orthogonal range
tree with d − 1 dimensions based on all coordinate values (except the first one (x)) of all points
belonging to the subtree of nodex. The construction time and space complexity of an orthogonal
range tree with d dimensions having n d-dimensional points is T (n) = O(n logd−1 n). The query
time complexity is T (n) = O(logd n+ k) where k is the number of points satisfying the query.

3



FCAI-CU AdvDS Range and Kd Trees Amin Allam

2 Kd tree

Kd tree is a static data structure that supports d-dimensional orthogonal range queries in a set
of n d-dimensional points, exactly as orthogonal range tree described before, but with different
time and space requirements. Kd tree requires only O(n) space and O(n log n) construction time,
regardless of the number of dimensions. However, the query time complexity O(n1− 1

d + k) if the
output consists of k points. In particular, the query time complexity for 2 dimensions is O(

√
n+k)

which is worse than the O(log2 n+ k) time complexity of the orthogonal 2d range tree.

Consider eight 2d input points (x,y) shown in the left figure below to be stored in a Kd tree (2d
tree). First, we divide the input points into two equal (or almost-equal) subsets based on their first
(x) coordinate values. Then, we find a vertical line (whose equation is X=constant) that divides
the two subsets. The line L1 (X=4.5) is chosen for that purpose, as shown in the left figure. The
equation of the separating line L1 is then assigned to the root of the Kd tree (in the right figure).
The left subtree should contain all points lying to the left of L1 (have less x coordinate values than
the constant in L1 equation). The right subtree should contain all points lying to the right of L1.
Internal nodes only act as separators, and input points are stored only in leaves.

Then, for each subset of the two subsets created above, we attempt to divide its nodes based on
their second (y) coordinate values. The horizontal line L2 (Y=6.5) divides the left subset of four
points, and the horizontal line L3 (Y=2.5) divides the right subset of four points. The Kd tree
nodes of the second level are created and assigned such line equations as shown in the right figure.
Note that if nodes of a any level contain vertical separators, nodes in the following level should
contain horizontal separators, and vice versa. Similarly, nodes of the third level contains vertical
lines where each line separates the two input points existing in the leaves of its subtree.

L1

L2

L3

L4

L5

L6

L7

(4,8)

(3,6)

(2,7)

(8,5)

(1,4)

(6,3)

(5,2)

(7,1)

L1

X=4.5

L2

Y=6.5

L3

Y=2.5

L4

X=2

L5

X=3

L6

X=6

L7

X=7

(1,4) (3,6) (2,7) (4,8) (5,2) (7,1) (6,3) (8,5)

To retrieve all two dimensional points (x, y) inside the query rectangle {[x=0, x=4], [y=5, y=7.5]},
we start from the root having the separator line L1 (X=4.5). Obviously, the query rectangle lies
entirely to the left of that separator, because query.x.hi < L1.x (4<4.5). Thus, we exclude the
right subtree from our search and follow the left path only.

The L2 (Y=6.5) separator is not helpful since it lies inside query.y interval, so the search follows
both left and right paths down. The L4 (X=2) and L5 (X=3) separators are not helpful as well,
so we follow both directions from both nodes to obtain four points. Comparing them against the
original query rectangle, only (3,6) and (2,7) are reported.

4



FCAI-CU AdvDS Range and Kd Trees Amin Allam

A 2d tree can be built by recursively calling the following procedure root← Build2dTree(p[], X),
where NextCoord(X)=Y and NextCoord(Y)=X:

Function Build2dTree(p[], Coord):
• medcord← The median Coord value of all points in p[]
• pleft[]← Points of p[] having Coord values < medcord
• pright[]← Points of p[] having Coord values ≥ medcord
• Construct root node • root. sep line← A Coord value separating those of pleft[] and pright[]
• root. left← Build2dTree(pleft, NextCoord(Coord))
• root. right← Build2dTree(pright, NextCoord(Coord))
• return root

Since calculating the median of n values requires a O(n) randomized algorithm, the time complex-
ity of the above procedure is T (n) = 2T (n/2)+O(n). Solving the recurrence: T (n) = O(n log n).
The space complexity is S(n) = 2S(n/2) + S(1). Solving the recurrence: S(n) = O(n).

A 2d tree can be queried by recursively calling the following procedure Query(root, query, X):

Query(node, query, Coord)
if (node is leaf ) report the stored point if it is contained in query
else if (Coord=X)

if (query.x.hi < node. sep line) then Query(node. left, query, Y)
else if (query.x. lo ≥ node. sep line) then Query(node. right, query, Y)
else Query(node. left, query, Y), Query(node. right, query, Y)

else if (Coord=Y)
if (query.y.hi < node. sep line) then Query(node. left, query, X)
else if (query.y. lo ≥ node. sep line) then Query(node. right, query, X)
else Query(node. left, query, X), Query(node. right, query, X)

To understand the O(
√
n) part of the query time complexity, consider a very thin horizontal query

rectangle. At the first level (Coord=X), the search goes to both left and right directions (so now
two nodes of the second level are visited in addition to the root in first level). At the second level
(Coord=Y), the search goes to only one direction (so each of the two visited nodes in the second
level will lead to one node in the third level, so only two more nodes are visited in the third level).

Thus, the number of visited nodes is 1 (root) + 2 (second level) + 2 (third level) + 4 (fourth level)
+ 4 + 8 + 8 + . . . + 2

1
2
log2 n + 2

1
2
log2 n (because we know that the number of added terms (levels)

equals to the tree height = log2 n). Therefore the sum equals 1+2(20+21+22+ · · ·+2
1
2
log2 n) =

1+2(2(
1
2
log2 n)+1−1) = 4(2

1
2
log2 n)−1. Since 2

1
2
log2 n = 2log2(n

1
2 ) = n

1
2 =
√
n, the sum is O(

√
n).

A Kd tree can be generalized to higher dimensions by cycling through different dimensions. For
example, to handle 3-dimensional input points (x,y,z), the first tree level should separate points
based on their x coordinate values. The second tree level should separate points based on their y
coordinate values. The third tree level should separate points based on their z coordinate values.
The fourth tree level should separate points based on their x coordinate values, and so on.

There exist dynamic insert and delete operations for Kd trees. However, the suggested implemen-
tations are not guaranteed to effectively maintain the balance and defined characteristics of the Kd
tree. Thus, Kd tree cannot be considered a dynamic data structure.

5


