
Cairo University
Faculty of Computers and Artificial Intelligence

Computer Science Department

Advanced Data Structures Interval and Segment Trees Dr. Amin Allam

[For more details, refer to “Introduction to Algorithms” by Thomas Cormen, et al.]
[For more details, refer to “Advanced Data Structures” by Peter Brass]

1 Interval tree

An interval [lo, hi] consists of the range between lo and hi inclusive, where lo ≤ hi. A point is a
special case of an interval where lo = hi. Two intervals [a. lo, a.hi] and [b. lo, b.hi] overlap if
and only if the overlapping condition is a. lo ≤ b.hi and b. lo ≤ a.hi. A dynamic interval tree
stores a set of intervals and allows the following operations:

• Insert an interval in O(log n) where n is the total number of stored intervals.
• Search for an interval overlapping with a query interval in O(log n).
• Search for all intervals overlapping with a query interval in O(k log n) where k is the number of
stored intervals satisfying the query.

The dynamic interval tree is a red-black tree such that each node stores the interval lo and hi
and keyed by lo (In case of tie, hi is used to resolve ties. If tie remains, other data is used to
resolve ties). That is, an in-order (depth first) traversal of the tree lists the intervals sorted by their
low endpoints. The tree is augmented with an additional member node.max which equals to the
maximum hi of all intervals stored in the subtree rooted at node. The node.max attribute can be
easily updated while insertion and deletion without changing their O(log n) time complexity by
the rule: node.max = max(node.hi, node. left.max, node. right.max).

The following procedure searches for an interval overlapping a query interval in O(log n):

node← root
while (query does not overlap node. interval)

if (query. lo > node. left.max)
then node← node. right
else node← node. left

return node. interval

if (query. lo > node. left.max) there is no point to search in the node. left subtree since it can
never overlap with any interval there, thus we only investigate node. right subtree.

if (query. lo ≤ node. left.max), it is possible to find overlapping intervals with query in both
node. left and node. right subtrees. However, if there exists an interval overlapping with query
in node. right subtree, there must be an interval overlapping with query in node. left subtree ∗.
Therefore it is safe to ignore node. right subtree and only investigate node. left subtree because
we are mainly interested in finding one interval overlapping with query.

1

FCAI-CU AdvDS Interval and Segment Trees Amin Allam

∗ If (query. lo≤ node. left.max) and there exists an interval overlapping with query in node. right
subtree, there must be an interval overlapping with query in node. left subtree.

Proof: We will prove that query overlaps with [m. lo, m.hi] which is the interval in node. left sub-
tree having m.hi = node. left.max. Since query. lo ≤ node. left.max, then query. lo ≤ m.hi.
To satisfy the overlapping condition, it remains to show that m. lo ≤ query.hi to prove that the
intervals query and m overlap.

Suppose the query interval overlaps with an interval [r. lo, r.hi] in node. right subtree. From
the overlapping condition: query.hi ≥ r. lo. Since the tree is keyed by lo, r. lo ≥ the lo of all
intervals in node. left subtree. Therefore, r. lo ≥ m. lo. Thus, query.hi ≥ m. lo.

The following recursive procedure modifies the above procedure to search for the interval having
the smallest lo endpoint overlapping with a query interval in O(log n). It differs from the above
procedure only in checking the left subtree for overlapping intervals before checking the current
node interval. The initial call should be Search(root, query):

Search(node, query)
if (query. lo ≤ node. left.max)
then

result = Search(node. left, query)
if (result 6= null) then return result
if (query overlaps node. interval) then return node. interval
return null

else
if (query overlaps node. interval) then return node. interval
return Search(node. right, query)

Let the number of levels of the tree is L = O(log n). The time complexity of the above procedure
is S(L) = S(L− 1) +O(1) where S(1) = O(1). Thus, its time complexity is L = O(log n).

To search for all intervals overlapping with a query interval, we can execute one of the above
procedures several times until it returns null, such that after each execution the found interval is
removed from the tree. Thus, the complexity of such iterative procedure is O(k log n) where k is
the number of stored intervals overlapping with the query interval.

It is possible to achieve that target without changing the tree structure, by storing - outside the tree -
the max attribute values for nodes that need updating. The last procedure is easier to be used in
such implementation, since in that case only the max attribute values of one path of the tree whose
length is O(log n) need to be stored, and we know that the next interval to be retrieved is located
somewhere on the stored path or to the right of it.

Since a point is a special case of an interval, all the above results hold if the query is a point instead
of an interval, and it is required to retrieve intervals including the query point.

There is a variant of static interval tree which, given n static intervals, can be built in O(n log n)
time and O(n) space and allows the retrieval of all stored k intervals overlapping with a query
interval in O(log n+ k) time. But, it does not allow efficient insertion of new intervals.

2

FCAI-CU AdvDS Interval and Segment Trees Amin Allam

2 Segment tree

Segment tree is a static data structure which stores right-open n input intervals in O(n log n)
space and allows the retrieval of all stored k input intervals overlapping with a query interval
in O(log n+ k) time. It does not allow efficient insertion of new intervals. A right-open interval
[lo, hi[consists of the range between its two endpoints: lo and hi, excluding hi, where lo < hi.

A segment tree is constructed in O(n log n) time by sorting the endpoints (except the maximum
one) of the n input intervals as keys of the lowest-level nodes of a static binary tree. Then, higher
levels are constructed such that an internal node is keyed by the the smallest key of its right subtree.

Each leaf node corresponds to the right-open segment tree interval starting from its key to the key
of its right adjacent leaf (or the maximum endpoint it is the right-most leaf). Each internal node
corresponds to the segment tree interval of the union of the segment tree intervals of its children.

Note that the union of segment tree interval of all nodes in the same level is the right-open segment
tree interval starting from the minimum endpoint to the maximum endpoint. Note also that all
segment tree intervals of a subtree are subsets of the segment tree interval of its root.

Then, each input interval is represented as the union of the smallest number of segment tree inter-
vals corresponding to segment tree nodes. Such representation is called the canonical representa-
tion of the input interval relative to that segment tree. Then each input interval is attached to all
such segment tree nodes participated in its canonical representation.

The following figure contains input interval at the top light-green rectangle. Node keys are shown
in yellow circles. Segment tree intervals corresponding to segment tree nodes are shown in light-
blue rectangles. Input intervals attached to segment tree nodes are shown in light-red rectangles.

[2,7[[4,5[[4,15[[7,12[[9,13[[11,13[[11,15[

[4,5[

[4,15[

[2,7[[7,12[[11,13[

[11,15[

[9,13[

[11,13[

[2,7[[4,15[[7,12[[9,13[[11,15[

[4,15[

2

[2,4[

4

[4,5[

5

[5,7[

7

[7,9[

9

[9,11[

11

[11,12[

12

[12,13[

13

[13,15[

4

[2,5[

7

[5,9[

11

[9,12[

13

[12,15[

5

[2,9[

12

[9,15[

9

[2,15[

The root corresponds to the interval [2, 15[spanning the minimum and maximum endpoints of all
input intervals. The root has the key 9 to indicate the separator between its left and right children
segment tree intervals which are [2, 9[and [9, 15[. The keys of the leaves are the endpoints of all
input intervals except for the maximum. For example, the leaf having the key 5 corresponds to the
segment tree intervals [5, 7[where 7 is the key of the adjacent right leaf.

3

FCAI-CU AdvDS Interval and Segment Trees Amin Allam

The canonical representation of the input interval [4, 15[relative to the above segment tree are the
segment tree intervals [4, 5[, [5, 9[, and [9, 15[(light-blue rectangles). Thus, the input interval [4, 15[
(light-red rectangles) is attached to the segment tree nodes corresponding to such segment tree
intervals. We described how to build the segment tree, except how to find canonical representations
of input intervals to attach them to the corresponding segment tree nodes, which is described below:

To construct the canonical representation of an input interval, start from the segment tree root and
consider the segment tree interval corresponding to the current segment tree node:
• If the segment tree interval is entirely contained in the input interval, attach the input interval to
the segment tree node and stop following the path down.
• If the segment tree interval partially overlaps the input interval, follow both paths down.
• If the segment tree interval is disjoint from the input interval, stop following the path down.

Since the segment tree is balanced, the segment tree height is O(log n). The above procedure
consumes O(log n) time because the maximum number of nodes investigated in each level is 4.

Proof: We will prove that there cannot be more than 2 nodes per level that both its paths need to
be followed down. Thus, the maximum number of investigated nodes per level is 4. Suppose that
there are ≥ 3 nodes to be investigated in the same level. All these nodes must be adjacent in the
subtree (because segment tree intervals in the same level are sorted), and all these nodes (except
for the farthest left and farthest right nodes) must be entirely contained in the input interval and
their paths need not to be followed down.

The above proof also proves that the size of the canonical representation of each input interval is
O(log n). Therefore, each input interval is attached to only O(log n) segment tree nodes. Thus,
the segment tree space is O(n log n). Also, its construction time is O(n log n).

The following O(log n+k) procedure reports all k input intervals overlapping with query interval:
• If the segment tree interval is entirely contained in the query interval, report all the attached input
intervals to all nodes in the subtree rooted by this segment tree node.
• If the segment tree interval partially overlaps the query interval, report all the attached input
intervals to this segment tree node and follow both paths down.
• If the segment tree interval is disjoint from the query interval, stop following the path down.

If the query is a single point, segment tree allows the retrieval of all k input intervals including the
query point in O(log n + k) time, starting from the root we follow one search tree path (as any
binary search tree) and report all input intervals attached to the traversed segment tree nodes.

Segment tree can be recursively generalized to d dimensions by constructing a one-dimensional
segment tree based on the first coordinate of all intervals, then attaching to every node a segment
tree of the remaining d− 1 dimensions built on all intervals in the subtree rooted at that node.

Because all levels are filled with nodes (except for the right places of the last level), segment trees
are complete trees and they can be implemented using arrays (similarly to implementing heaps).
Simple mathematical formulas are used to traverse from parent to children and vice versa.

Segment tree is a powerful framework that can be modified to be used for other purposes, such
as answering dynamic range queries as range sum queries and range minimum queries including
point and range updates.

4

