
Cairo University
Faculty of Computers and Artificial Intelligence

Computer Science Department

Advanced Data Structures Suffix Arrays Dr. Amin Allam

[For more details, refer to “Jewels of Stringology” by Maxime Crochemore and Wojciech Rytter]

1 Suffix arrays

The suffix array of a given string of length n (including a sentinel $) is an integer array containing
the suffix IDs of the lexicographically sorted suffixes of the original string (the sentinel $ simplifies
algorithms and is considered the smallest character). A suffix ID is the start index of this suffix
inside the original string.

The purpose of the suffix array is the same as the suffix tree, but suffix array is less powerful
(enables less operations than suffix tree) but more compact (needs less space than suffix tree).

Consider the suffixes of the string ACGACTACGATAAC$ of length n = 15:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
A C G A C T A C G A T A A C $

The right table shows the suffixes of the string ACGACTACGATAAC$ sorted lexicographically:

Suffix ID Suffix string
0 ACGACTACGATAAC$
1 CGACTACGATAAC$
2 GACTACGATAAC$
3 ACTACGATAAC$
4 CTACGATAAC$
5 TACGATAAC$
6 ACGATAAC$
7 CGATAAC$
8 GATAAC$
9 ATAAC$

10 TAAC$
11 AAC$
12 AC$
13 C$
14 $

Suffix ID Suffix string
14 $
11 AAC$
12 AC$
0 ACGACTACGATAAC$
6 ACGATAAC$
3 ACTACGATAAC$
9 ATAAC$

13 C$
1 CGACTACGATAAC$
7 CGATAAC$
4 CTACGATAAC$
2 GACTACGATAAC$
8 GATAAC$

10 TAAC$
5 TACGATAAC$

Therefore, the suffix array of the string ACGACTACGATAAC$ is:

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Suffix array 14 11 12 0 6 3 9 13 1 7 4 2 8 10 5

1



FCAI-CU AdvDS Suffix Arrays Amin Allam

Using the suffix array and the original string, we can search for any substring query of length
m inside the original string in O(m × (log n + occ)) time using binary search, where occ is the
number of occurrences of the substring query inside the original string.

The above complexity is achieved because each of the O(log n) binary search iterations includes
an O(m) string comparison of the substring query to an original string suffix. After the binary
search is done, we perform string comparison of the substring query to all suffixes starting from
the result location of the binary search until we encounter a suffix which is not prefixed by the
substring query. The number of such suffixes is occ.

The third column of suffix strings in the following figure is not part of the suffix array and is shown
for illustration only since it can be deduced easily from the suffix array and the original string.

Index Suffix array Corresponding suffix
0 14 $
1 11 AAC$
2 12 AC$
3 0 ACGACTACGATAAC$
4 6 ACGATAAC$
5 3 ACTACGATAAC$
6 9 ATAAC$
7 13 C$
8 1 CGACTACGATAAC$
9 7 CGATAAC$

10 4 CTACGATAAC$
11 2 GACTACGATAAC$
12 8 GATAAC$
13 10 TAAC$
14 5 TACGATAAC$

Here we trace the binary search for the substring CGA using the above suffix array only. We start
with an unexplored interval [0, 15] representing [first index , last index + 1].

Middle index is b(0 + 15)/2c = 7. CGA > C$. Interval shrinks to [8, 15].
Middle index is b(8 + 15)/2c = 11. CGA < GACTACGATAAC$. Interval shrinks to [8, 11].
Middle index is b(8 + 11)/2c = 9. CGA < CGATAAC$. Interval shrinks to [8, 9].
Middle index is b(8 + 9)/2c = 8. CGA < CGACTACGATAAC$. Interval shrinks to [8, 8].

Then, we test if CGA is prefix of suffixes at indexes ≥ 8 in suffix array:
CGA is prefix of CGACTACGATAAC$ at index 8. Report occurrence at index 1 in original string.
CGA is prefix of CGATAAC$ at index 9. Report occurrence at index 7 in original string.
CGA is not prefix of CTACGATAAC$ at index 10. Stop.

The complexity can be improved to O(m log n+occ) by performing another binary search instead
of comparing all suffixes starting from result index of the first binary search. The second binary
search is similar to the first one, except that if query substring is prefix of compared suffix, it is
considered greater than this suffix. In the above example, the second binary search will result the
interval [10, 10] which is 1+ index of the last occurrence of query substring in suffix array.

2



FCAI-CU AdvDS Suffix Arrays Amin Allam

2 Suffix array construction

A suffix array can be constructed naively in O(n2 log n) using an O(n log n) sorting algorithm such
as merge sort. The additional n factor in complexity arises because the complexity of each suffix
comparison performed by the algorithm is O(n), not O(1).

We can utilize the strong relation between suffixes of the same original string to improve the suffix
array construction time to O(n log n) using the following prefix doubling algorithm.

Consider constructing suffix array of string ACGACTACGATAAC$ using prefix doubling. The ini-
tial step is to sort all suffixes by their first character only, simply by assigning to each suffix the
order of its first character in the alphabet. Remember that $ is the smallest character.

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Iteration Sorted prefix len A C G A C T A C G A T A A C $
0 20 = 1 1 2 3 1 2 4 1 2 3 1 4 1 1 2 0

From the above table, we recognize that the smallest suffix $ gets the smallest integer 0. The
immediately larger suffixes are those starting with A. They all got the next smallest integer 1,
because they are equal if we look at their first character only which is A. The immediately larger
suffixes are those starting with B. They all got the next smallest integer 2, because they are equal if
we look at their first character only which is B.

The general rule is that, in iteration i, all suffixes are sorted according to their first 2i characters
only. That is, we assume that the length of each suffix is only 2i. All suffixes starting with the same
prefix of size 2i are considered equal and assigned the same integer. Thus, the second iteration
i = 1 assigns the same integer to all suffixes starting with the same 21 = 2 characters:

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Iteration Sorted prefix len A C G A C T A C G A T A A C $
0 20 = 1 1 2 3 1 2 4 1 2 3 1 4 1 1 2 0
1 21 = 2 2 5 7 2 6 8 2 5 7 3 8 1 2 4 0

From the above table, we recognize that the smallest suffix $ gets the smallest integer 0. The
immediately larger suffixes are those starting with AA. It is exactly one suffix and it got the next
smallest integer 1. The immediately larger suffixes are those starting with AC. They all got the next
smallest integer 2, because they are equal if we look at their first two characters only which are AC.

Here we explain how to reduce time complexity. The next iteration i = 2 of the algorithm is going
to sort suffixes according to their first 2i = 22 = 4 characters. Instead of comparing two suffixes by
performing a string comparison of their first 4 characters, we will perform a more efficient suffix
comparison using the results of the previous iteration i = 1.

To compare two suffixes at iteration i, look at their assigned integers at iteration i−1. If the integers
are not equal, their relative order remains the same. If the integers are equal, look at relative order
of the two suffixes shifted by 2i positions from the locations of the needed suffixes.

For example, to compare the first 4 characters of the two suffixes at indexes 4 (CTAC) and 7 (CGAT),
look at their relative order according to their first 2 characters, appearing in last row in the above
table to be 6 and 5, indicating that suffix 4 is larger than suffix 7. The relation remains the same.

3



FCAI-CU AdvDS Suffix Arrays Amin Allam

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Iteration Sorted prefix len A C G A C T A C G A T A A C $
0 20 = 1 1 2 3 1 2 4 1 2 3 1 4 1 1 2 0
1 21 = 2 2 5 7 2 6 8 2 5 7 3 8 1 2 4 0

Another example for the other case, to compare the first 4 characters of the two suffixes at indexes
2 (GACT) and 8 (GATA). Their orders according to their first 2 characters, appearing in last row
in the above table are 7 and 7, indicating that suffix 2 is equal to suffix 8 with respect to the first 2
characters (GA).

Since they are equal, we consider the two suffixes shifted by 2 from the original suffixes indexes,
which are suffixes at indexes 2 + 2 = 4 (CT) and 8 + 2 = 10 (TA). Their orders according to their
first 2 characters, appearing in last row in the above table are 6 and 8, indicating that suffix 4 is
smaller than suffix 10 with respect to their first 2 characters (GA), which implies the same relation
between the original two suffixes 2 (GACT) and 8 (GATA) with respect to their first 4 characters.

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Iter Sorted prefix len A C G A C T A C G A T A A C $
0 20 = 1 1 2 3 1 2 4 1 2 3 1 4 1 1 2 0
1 21 = 2 2 5 7 2 6 8 2 5 7 3 8 1 2 4 0
2 22 = 4 3 7 10 4 9 13 3 8 11 5 12 1 2 6 0

Here we explain how to obtain all suffix orders from of iteration 2 from iteration 1. There is exactly
one suffix with order 0 which is suffix 14, its order remains the same. Also, only suffix 11 has order
1 and remains the same.

There are 4 suffixes with order 2 which are 0, 3, 6, 12. We look at shifted-by-2 suffixes 2, 5, 8,
14 their orders are 7, 8, 7, 0 to conclude that the smallest suffix is 12 so we assign to it order of 2
(because last assigned order was 1). Then, next smallest suffixes are 0 and 6 with the same order of
3, meaning that they are still equal with respect to their first 4 characters, then suffix 3 takes order
of 4 (because last assigned order was 3).

Only suffix 9 has order 3 in iteration 1. It is assigned order 5 in iteration 2 (because last assigned
order was 4). Only suffix 13 has order 4. It is assigned order 6. There are 2 suffixes with order
5 which are 1, 7. We look at shifted-by-2 suffixes 3, 9 their orders are 2, 3 to conclude that the
smaller suffix is 1 so we assign to it order of 7, then suffix 7 takes order of 8. Only suffix 4 has order
6. It is assigned order 9.

There are 2 suffixes with order 7 which are 2, 8. We look at shifted-by-2 suffixes 4, 10 their orders
are 6, 8 to conclude that the smaller suffix is 2 so we assign to it order of 10, then suffix 8 takes
order of 11. There are 2 suffixes with order 8 which are 5, 10. We look at shifted-by-2 suffixes 7,
12 their orders are 5, 1 to conclude that the smaller suffix is 10 so we assign to it order of 12, then
suffix 5 takes order of 13.

Note that actually there should not be any two equal suffixes, so the algorithm terminates only if
there are no two suffixes with the same order.

To move to the next iteration 3, the only two suffixes with same order are 0, 6. We look at shifted-
by-4 suffixes 4, 10 their orders in iteration 2 are 9, 12 to conclude that the smaller suffix is 0 so we
assign to it a smaller order than suffix 6 as follows:

4



FCAI-CU AdvDS Suffix Arrays Amin Allam

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Iter Sorted prefix len A C G A C T A C G A T A A C $
0 20 = 1 1 2 3 1 2 4 1 2 3 1 4 1 1 2 0
1 21 = 2 2 5 7 2 6 8 2 5 7 3 8 1 2 4 0
2 22 = 4 3 7 10 4 9 13 3 8 11 5 12 1 2 6 0
3 23 = 8 3 8 11 5 10 14 4 9 12 6 13 1 2 7 0

The algorithm terminates because all suffixes have different orders as they should. Since we ter-
minated at iteration 3 we conclude that no two suffixes share the same prefix of 23 = 8 characters.

The resulting array is not the suffix array, but it is the inverse of the suffix array. The resulting
array tells the order given a suffix ID (example: suffix 12 has the order 2). The suffix array tells
the suffix ID given an order (example: the suffix of order 2 is 12). The suffix array can be easily
obtained from its inverse by O(n) sequential scan:

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Suffix array 14 11 12 0 6 3 9 13 1 7 4 2 8 10 5

In the worst case, no two suffixes share the same prefix of n characters because all suffixes are
different. Therefore, the number of iterations is O(log n) can be concluded from the second column
because maximum sorted prefix length is n and it is multiplied by 2 at each iteration.

At each iteration suffixes are sorted using O(n log n) sorting algorithm, then the required array in
the figures above is obtained in O(n) sequential scan over the sorted array. Each suffix comparison
needs only O(1) operations since we compare 2 orders, and when equal we compare 2 shifted
orders. It can be viewed as comparing pairs of integers. Therefore, the total time complexity is
O(n log2 n). Since the sorting procedure compares two pairs of integers whose range is n, we
can use two-pass O(n) radix sorting at each iteration to reduce the total complexity to O(n log n).
There is also an O(n) suffix array construction algorithm called induced sorting.

5


