
Cairo University
Faculty of Computers and Artificial Intelligence

Computer Science Department

Advanced Data Structures Red-Black Trees Dr. Amin Allam

[For more details, refer to “Introduction to Algorithms” by Thomas Cormen, et al.]

1 Introduction

A red-black tree is a balanced binary search tree whose height grows only logarithmically to the
number of nodes in the tree. Each node in the red-black tree has a colour, which is either red or
black. The colour is a boolean attribute that helps balancing the tree. We define the height of a
node x to be H(x) = the number of edges on a path from x down to the farthest leaf .

A binary search tree is a red-black tree if it satisfies the
following essential properties (invariants):

1) Every node is either red or black. The root is black.
2) Every internal (non-leaf ) node has exactly two children.
3) The tree does not contain any two adjacent red nodes.
4) All paths from any given node x to its descendant leaves
have equal number of black nodes = B(x).

A

B

C

D

E

F

G

The combination of the second and fourth properties is the key to understand the intuition behind
red-black trees. Suppose we do not allow any red nodes, these properties are too strict since they
hold only if the tree is full and the tree is perfectly balanced, and they can never hold when the
number of nodes is not 2n − 1 for some n ≥ 1. The incorporation of the first and third properties
allows the existence of red nodes, such that the number of red nodes on any path is not more than
the number of black nodes. Now, applying the last property to only black nodes is possible, and
guarantees that the maximum path length is at most twice the optimal one.

Proposition: The subtree rooted at any node x contains at least 2B(x) − 1 nodes.
Proof: By induction on H(x): Base step: Consider a leaf x If H(x) = 0. B(x) is 0 or 1, depending
on its colour. 2B(x)−1 is 0 or 1. The subtree rooted at x contains 1 node, which is at least 2B(x)−1.
Induction step: Consider a node x whose H(x) > 0 with two children y and z. Each of B(y) and
B(z) equals to B(x) or B(x) − 1 depending on x colour. Since H(y) and H(z) are < H(x), we
can apply the inductive hypothesis to conclude that each child has at least 2B(x)−1−1 nodes. Thus,
the subtree rooted at x contains at least 2× (2B(x)−1 − 1) + 1 = 2B(x) − 1 nodes.

Lemma: A red-black tree has height H(root) ≤ 2 log2(n+ 1) where n is the number of nodes.
Proof: Since there cannot be two adjacent red nodes, at least half of the nodes on any simple path
from the root to a leaf must be black. Thus, B(root) ≥ H(root)/2. Applying the proposition
above, n ≥ 2B(root) − 1 ≥ 2H(root)/2 − 1. So, H(root) ≤ 2 log2(n+ 1).

− In order to simplify the implementation and maintain property 2, we insert two additional black
children for each leaf . These additional children are just sentinels which do not contain data.

1



FCAI-CU AdvDS Red-Black Trees Amin Allam

2 Insertion

A node is inserted and coloured red in order to maintain property 4. If its parent is red, one or
more of the following cases is followed to preserve property 3. If the root becomes red, it is just
converted into black. The first two cases should be continued. Symmetric cases are not shown.
The subtrees a, b, c, d, e have black roots.

2.1 Case-1

a

A

b

B

c

C

d

D

e a

A

b

B

c

C

d

D

e

2.2 Case-2

a

A

b

B

c

C

d

D

e

a

A

b

B

c

C

d

D

e

2.3 Case-3

a

A

b

B

c

C

d

a

A

b

B

c

C

d

2.4 Case-4

a

A

b

B

c

C

d

a

A

b

B

c

C

d

2



FCAI-CU AdvDS Red-Black Trees Amin Allam

3 Deletion

If the physically deleted node was red, no changes are needed. Otherwise, the child of the physi-
cally deleted node gets an additional black in order to maintain property 4. The additional black
should be removed from that node to preserve property 1. If it was originally red, it is just con-
verted into black. Otherwise, one or more of the following cases is followed in order to remove
the additional black while maintaining other properties. The first two cases should be continued.
Symmetric cases are not shown.

3.1 Case-1

a

A

b

B

c

C

d

D

e

a

A

b

B

c

C

d

D

e

3.2 Case-2

a

A

b

B

c

C

d

D

e

E

f

a

A

b

B

c

C

d

D

e

E

f

3.3 Case-3

a

A

b

B

c

C

d

D

e

a

A

b

B

c

C

d

D

e

3.4 Case-4

a

A

b

B

c

C

d

D

e a

A

b

B

c

C

d

D

e

3



FCAI-CU AdvDS Red-Black Trees Amin Allam

4 Example:

Starting from an initial empty tree, draw all intermediate trees and draw the tree after each of the
following operations:
Insert(M), Insert(T), Insert(F), Insert(Q), Insert(P), Delete(F), Delete(Q), Delete(T).

4.1 Insert(M), Insert(T), Insert(F)

M M
M

T F

M

T

4.2 Insert(Q)

F

M

Q

T F

M

Q

T F

M

Q

T

4.3 Insert(P)

F

M

P

Q

T
F

M

P

Q

T

4.4 Delete(F)

M

P

Q

T

M

P

Q

T

4



FCAI-CU AdvDS Red-Black Trees Amin Allam

4.5 Delete(Q)

M

P

T M

P

T

4.6 Delete(T)

M

P

M

P

M

P

5


